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SUMMARY

The numerical computation of unsteady airloads acting upon thin airfoils
with multiple leading and trailing edge controls in two dimensional ventilated
subsonic wind tunnels is studied. The foundation of the computational method
is strengthened with a new and more powerful mathematical existence and
convergence theory for solving Cauchy singular integral equations of the first
kind, and the method of convergence acceleration by extrapolation to the limit
is introduced to analyze airfoils with flaps. New results are presented for
steady and unsteady flow, including the effect of acoustic resonance between

ventilated wind tunnel walls and airfoils with oscillating flaps.



TABLE OF CONTENTS

TABLE OF CONTENTS ........... Ceeteiiecbaaesesanann P £ 24
LIST OF FIGURES .cvececeecncecseccncansconnansacananncansonscasscsanacorsosssss LU
LIST OF TABLES svtvececscesacaccnoncenasonansensansonssasnasacanaacssssasasss D
LIST OF SYMBOLS .ceccecvnceccccacccns P )
1. IntroduCtion ..ueeeeecenreececesensasessononceassssosasonscasanscceascanans 1
2. Basic equations ............ tessens cecrecssaseas ceneeaness teesscesencoeane
3. Bland's integral equation .............. csessanans eresessccscececacen ... 10
4. Extension to the porous wall case ......ccc.- cessescecns teccessencccenan 14
5. Fourier theory of airfoil polynomials ............. ceesesanse cecsasanee . 22
6. Solution by collocation of the integral equation ..........ccccceens cee. 34
7. Transformation properties of airlocads .......cc.... tecasesccacennn ceesena 36
8. Representation of airfoils with multiple controls ..........ccccieceann. 46
9. Instructions for the use of TWODI ..... ceereseeeans ceeeaees cevencenenen . 53
10. Convergence characteristics of TWODI ........ cesssecensearaanans vesessss. 64
11. Acceleration of convergence for discontinuous downwash ......ccceeeceens 77
12. Efficient integration of singularities in the kernel ............. ceeees 97
13. Steady airloads for porous wall tunnels ............ ceseeanan seeesenas .. 108
14. sSteady and unsteady interference calculations for airfoils with flaps ... 114
15. ConcluSiONnS ...uueeieeeeeenssanronosccanasocosnosnsas tesessesecenenanenn 119
REFERENCES .....cccceeeeccenn craeeeaeeneaas [ seacscscanans cssecesersanes 121
APPENDIX ...t cccecccccncnacesn cectesaccens sececesaasecsans cesccas cscecenanacas 127



LIST OF FIGURES

1. Coordinate system and sign conventions .....ecccceneceenn.. cterecseennransaas 3
2. Steady interference kernel for variable porosity wind tunnels ........
3. Steady complete kernel for variable porosity wind tunnels ........ceevvnneen.s 21

4. Steady 1lift and center of pressure vs. ventilation for a porous wall tunnel.. 48

5. Steady lift vs. M, n and v for unit downwash ...... ..., 111
6. Steady moment vs. M,+n and v for unit downwash «....ceevecenns tees st eeasacanaa 112
7. Steady center of pressure vs. M, n and v for unit downwash .................. 113
8. Steady lift interference vs. M for a flap at the three quarter chord ..... ee. 117
9. CLG vs. M, k and u for an oscillating flap in a wind tunnel ............ ves.. 118



10.

11.

12.

13.

14.

15.

16.

17.

-V

LIST OF TABLES

Steady interference kernel BnAK for variable porosity wind tunnels .....
Steady complete kernel BnK for variable porosity wind tunnels ..........
Principal error term in norm for a midchord flap (M=0, k=0, N=%) .eeceee.
Principal error term in lift for a midchord flap (M=0, k=0, N=®) <cce...
CL6 for an oscillating flap hinged at the 50% chord (M=0, k=1, n=«®) ....
CL6 for an oscillating flap hinged at the 75% chord (M=0, k=1, n=«) ....
Extrapolation of CLG and norm for a midchord flap (M=0, k=0, n=«) ......
Extrapolation of CLG for an oscillating flap hinged at the 50% chord ...
Extrapolation of CLS for an oscillating flap hinged at the 75% chord ...
Effect of using incorrect subsequences for extrapolation .......cccce...
Convergence of section coefficients for 50% flap using finite elements..
Error in J:xn log x dx using NQ point Legendre-Gaussian quadrature ......
Method of integrating singularities in the kernel ............... cearene
Lift and center of pressure vs. ventilation for a porous wall tunnel ...
Section coefficients vs. M, n and v for unit downwash ........... seeaaen

Steady 1lift interference vs. M for a flap at the three quarter chord ...

C vs. M, k and y for an oscillating flap in a wind tunnel ....... ceene
bs

20

20

71

71

72

72

94

95

95

95

96

98

101

109

109

115

1le



-7 -

LIST OF SYMBOLS

This section provides a partial list of frequently occurring symbols and
their names. Places of first occurrence or definition are given by section num-
ber denoted with §, by equation number enclosed in parentheses, etc. 1In a few
instances the same symbol is used for different meanings but it will be clear
from the context which is correct. Any consistent system of physical units

may be employed, although most quantities are nondimensional.

Symbol Name Place
a 1, [ﬂ ] Aerodynamic work matrices. §7
mn mn
a Point of discontinuity. (5.26)
N N point collocation coefficients. §6
a, ék’ 6ak Collocation coefficients, their numerically
computed values, and their error. §10
a, é, Sa Vectors of ay s ék and Gak. 8§10
b Airfoil semichord. §2
C Complex constant. §10
Ci Cosine integral. (12.8)
N
C, C Set of complex numbers, and Nth Cartesian §10
product.
N N . . .
[Cmn], C N point collocation matrix. §§6, 10
CL, CM Lift and pitching moment coefficients. §7
CLm, CMn, Lift and pitching moment coefficients
& & due to displacements hn and h . §7
In? M, n
c Ambient speed of sound. §2
o) Mean aerodynamic chord. (7.2)
[Da ],[DY ] Differentiating matrices. (5.40)
mn mn
de, dB Stieltjes measures. Theorem 10.1
EN Quadrature error. §5
Element index. Also 2.71828... §8
Interference function. (4.17)
F Functions in kernel. (12.2)



Symbol

h ; h (e)
mn
h
I1l, 12, I3
J
n
K, AK
K
Kir %
KL, Kc
k
k
n
L
L2 2 2
a’ Ty’ L
L
N
2
k
2
M
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Name

Integrand.

FPourier transform pairs.

Analytic functions.

Transformation matrices.

Arbitrary Hilbert spaces
Akheizer-Bland transform, its inverse

and adjoint.

Transformation matrices between deflection
bases.

Displacement bases.

Displacement nodal values, and element
displacement nodal values.

Airfoil profile or displacement function.
TWODI solution parameters.

Imaginary unit. Also integer index.
Bessel function of the first kind.

Kernel and interference kernel. The
integral operator corresponding to K is
denoted by T.

Non unitary part of K. The integral

operator corresponding to K is denoted by K.

Non unitary parts of T.

Logarithmic and continuous parts of the
kernel K, and the integral operator T.
Downwash collocation operators.

Reduced frequency based on semichord.

The nth resonant reduced frequency.

Lift.

Hilbert spaces for downwash, pressure
and displacement.

N point collocation operator.
Lagrange interpolation polynomial.
Length.

Free stream Mach number, pitching moment.

Place

(5.2

(3.2
(12.

(5.3
§5

§5

(7.2

§7

§8

7)fE.

)
19)

5)

2)

Figure 1

§9.4
§2
§12

§83,

4

§10.1
§10.1

(6.10), §10
(10.4)

§2

(14.1)

(7.2)

§§5,

7

(10.3)

(10.3)

(2.9

§2,

o)

(7.2)



Ap, Apn

t

u

vl,...,VN

Name

Number of chordwise elements.
Number of displacement modes.
Number of displacement nodes.
Number of hinges.

Aerodynamic pressure.

Pressure jump, pressure jump due to hn.

Quadrature operator. Also operator of
orthogonal projection.

Generalized coordinates.
TWODI solution parameters.
Residual downwash.

Function defined by infinite series, and
its derivative.

Coefficient in S.
Fourier transform variable.

Integral operator of generalized airfoil
integral equation.

Time.

Variable of integration.

Real or integer numbers.

Normal component of velocity
Porosity resistence velocity
Free stream velocity
Quadrature weights.

Déwnwash transformation matrix.
Downwash, downwash due to hn'
Residual downwash.

Singular and continuous parts of downwash

Place

§8.2
8.1
§8.1
§8.1

(2.3)
(2.52), §7.2

§10.1, §11.2

87
§9.4
(6.5)

(3.111)

(3.112)
(3.2)

(6.1)

§2
(12.6)
§9.4
(2.92)
(2.101)
§2

§5

(11.2)

(11.19)
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Name
Streamwise coordinate.

Center of pressure as a fraction of
chord, measured from leading edge.

Collocation points.
The ith zero of uN. Also collocation
points.

Bessel function of the second kind.
The jth order extrapolate from o -

Vertical coordinate.

(o]
Limit of {a_};. Also angle of attack.
Also extrapolation coefficient.

Downwash (a~angle of attack) basis functions.

Co Mach number, B=v1-M2. Also extrapolation

coefficient.

Integral.

Ventilation parameter. Also extrapolation
coefficient.

Pressure (y~vorticity) basis functions.

Flap rotation angle.

Kronecker delta.

Difference between mathematically exact
and computational values of wn.

Real number. Also set containment symbol.

Error.

Leakage angle for porous wall tunnel.

Frequency ratio.
Tunnel height to airfoil chord ratio.

Angular variables.
Eigenvalues. Also quadrature weights.

Mass effect (slotted wall) ventilation
coefficient.

Viscous effect (porous wall) ventilation
coefficient.

Streamwise coordinate.

The ith zero of YN. Also quadrature points.

Place

Figure 1
(7.5)
(6.6)

(5.61), (6.12)

(12.14)

(11.50)

Figure 1

§11.5, Table 12, (11.54)
(5.4)

(3.31). (11.54)

Theorem 10.1

(3.115), (11.54)

(5.42)

Table 7
(5.7)

§10.2

§84, 5
§11.5

(4.7)
(3.113)

Figure 1
(5.26)ff., §13
(3.11), §lo
(2.93)

(2.102)

§3

(5.62), (6.12)
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Name
Operator of orthogonal projection.
Free stream fluid density.

Fourier transform parameter. Also
constant in convergence analysis.

Asymptotic coefficients.

Similarity parameter. Also convergence
and error analysis parameter.

Convergence and error analysis parameter.
Perturbation velocity potential

Pressure factor.

Approximation to V.

Collocation approximation to V.

Computed value of wN.

Approximation to y.

Galerkin approximation to .
Approximation to wR.

Picard iterate of wg.

Residual pressure factor.
Domain of wind tunnel problem.
Element domain along chord.
Frequency, rad/s.

Operator norm.
Quadrature norm.
Vector norms; i=1, 2, a, B.

Inner products; i=1l, 2, a, B.

Jump function.

Place
(11.30)
§2
(3.42),

(11.46)
(4.18),

(10.19)

§10.2

Lemma 10.1

(2.2)
(3.15)
(11.2)
(10.5),

(10.13)
(11.11)

(11.27)

(11.5)

(11.31)

(11.3)
(3.1)
(8.6)
Figure 1
(5.16)

(10.20)
§5

§5
(5.25)

(11.27)



§1. Introduction?

The theory of aerodynamic interference is necessary to extrapolate wind tunﬁel
test data to free flight conditions. Analytically the wind tunnel problem is more
difficult than the free air problem because of the presence of the wind tunnel walls,
although computationally it may be checked against known free air results. However,
the physical validity of wind tunnel interference theories must be established by
the more stringent comparison with experimental data for both the free air and wind
tunnel conditions.

Physically the nature of wind tunnel flow is highly complex so that consider-
able simplification of the theory is necessary in order to produce useful results.
Most existing wind tunnel theories, see e.g., [1}, (2], (3], [4]2, are based on far
field effects under the assumption of inviscid linear potential flow. Clearly vis-
cosity plays a major role in boundary layer and wall effects, as do nonlinearities
in transonic flow. Although significant progress has been made in the general field
of computational fluid mechanics in the past decade, the inclusion of viscosity and
nonlinearities entails an order of magnitude more computational expense than the
linear inviscid theories.

In shock free flow over moderately thin airfoils, good correlation with experi-
ment can be obtained using linear potential flow theory, and there remain open signi-
ficant research problems of practical importance. Among these are the proper form
or forms of the boundary condition at ventilated tunnel walls, the efficient compu-
tation of unsteady airloads especially when flaps are present, and effects of acoustic
resonance between oscillating airfoils and ventilated wind tunnel walls.

In this report we discuss the problem of predicting unsteady airloads on thin
airfoils in two dimensional subsonic flow through ventilated wind tunnels. Our pre-
vious work [5], [6] is extended to include the problem of multiple leading and trail-
ing edge controls, and to permit porous wind tunnel walls in steady flow. This work
is based on the method of orthogonal polynomial pairs discovered originally by N.I.
Akheizer [7] in the Soviet Union in 1945 and developed independently but later by

S.R. Bland and his coworkers for the practical solution of airfoil problems [8], [9],

1The authors wish to acknowledge the valuable help of Dr. Sanford Davis, Ms. Theda
Grinnell and Mesrs. Charles Doughty, Paul Kriner and Steven Sedlacek.
2Numbers in square brackets refer to the bibliography found in the REFERENCES in

order of first citation, and may also give the page, section or chapter of interest.
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[10]. 1In section 2 below we set down the underlying partial differential equations
and boundary conditions. Section 3 describes Bland's kernel of the integral equa-
tion relating downwash to pressure for unsteady flow in slotted wall tunnels and
section 4 describes the kernel for porous wall tunnels in steady flow. Sections 5
and 6 review the theory of airfoil polynomials and Bland's collocation method. Al-
though this is slightly repetitious of earlier work, we have simplified the notation
somewhat and unified certain other concepts. Sections 7 and 8 discuss the calcula-
tion of airloads and the method of representation of airfoil profiles possessing mul-
tiple leading and trailing edge controls. Section 9 and the APPENDIX present'instruc—
tions for the use of the computer program TWODI and a sample interactive input/output
scenario. Sections 10 and 11 present a comprehensive analysis of convergence of col-
location and other computational methods and of the method of extrapolation used to

accelerate numerical convergence in the case of flaps. Section 12 shows how computa-

nel and integrating them separately. Sections 13, 14 and the APPENDIX present numer-
ical results for steady flow in porous wall tunnels and for steady and unsteady flow
over airfoils with flaps in ventilated tunnels for frequency ranges which include
resonance between the oscillating airfoil and the wind tunnel walls. In section 15,
we offer our conclusions based on the present study and recommendations for future

research.
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§2. Basic equations

Consider a thin nearly planar airfoil undergoing simple harmonic motion at
frequency  rad/sec about the center plane of a two dimensional ventilated wind
tunnel (Figure 1). The flow is considered to be inviscid and strictly subsonic,
and to be a small disturbance from the free stream flow.

We point out that free air conditions are included as an important special

case upon taking the walls to be infinitely far apart (no>«).

z=Re (h{(x)exp (iwt))

\’x__fl x

Figure 1. Coordinate system and sign conventions

In this study we are particularly interested in unsteady interference effects
on airfoils with flaps but, in.general, we may allow the deflection amplitude func-
tion h to represent upper, lower or mean airfoil profiles as well as arbitrary aero-
elastic shapes, including rigid body and control surface deflections-

Deflection is measured positive downward so that positive streamwise deriva-
tives correspond to positive angles of attack. Lift will be measured positive up-—
ward, and pitching moment will be measured abhout the gquarter chord, positive in the

direction of increasing angle of attack (nose up).
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Except where specifically stated to the contrary, all quantities are dimension-
less. Lengths are nondimensionalized by the airfoil semichord b, pressures by the
free stream dynamic pressure % P vi and, with the notable exception.of Mach number,
velocities are nondimensionalized by the free stream velocity V- Following cus-
tomary practice, streamwise coordinates are measured positive downstream, having
value -1 at the leading edge and +1 at the trailing edge.

Denote by w the downwash amplitude nondimensionalized by the free stream veloc-
ity,
) = (-4 i0ne, (2.1)
where k=mb/vm is the reduced frequency based on semichord. Denote by ¢ the pertur-
bation velocity potential nondimensionalized by bvoo and denote by p the perturbation
pressure nondimensionalized by % pmvi. Then the perturbation velocity potential sat-

isfies the unsteady wave equation
2 2 d 1) 2
V<¢-M (ax + ik)“¢ = 0 (2.2)

where M=v°°/cco is the free stream Mach number (for simplicity we omit the subscript

on M). The pressure is related to the velocity potential by
-2+ ik ¢ (2.3)
P ax . .

When the boundary conditions at the upper and lower walls are the same, both
the pressure and velocity potential can be shown to be antisymmetric functions of

z; i.e.,
pix,-z) = -p(x,2), ¢(x,-z) = -d(x,z). (2.4)

Since the pressure is assumed to be continuous everywhere in the flow field
except across the airfoil where it is permitted to be discontinuous (vortex surface)
and since the pressure is assumed to be continuous at the trailing edge (Kutta con-

dition), we may write
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p(x,0) = 0, |x|>1, (2.571)
p(x,0) = - %Ap(x), [x]<1, (2.55)
p(x,0) = 0, x =1, (2.53)

where Ap is the lifting pressure jump across the airfoil.

At the surface of the airfoil, the flow must be tangent to the surface. Thus,

]
—il = w(x), [x]<1. (2.6)
2z
z=0
The purely kinematical boundary condition (2.6) is exactly equivalent to the asser-
tion that zero mass can flow through the surface of the airfoil. The corresponding

statement for a closed wall wind tunnel is

B =0, el 270
z z=in
which in view of (2.3), is equivalent to
)
SBI =0, |x|<w. (2.73)
z z=1in

An open jet boundary is defined mathematically as one on which the perturbation

pressure is zero (see, e.g., [1, p.47] or [2, p.4l}1),

Plz=tn =0, lxl<W. (2.87)

An alternate formulation which is equivalent to (2.87),

¢) posry = O x| <o, (2.83)

is obtained by integrating (2.3).
We point out that an open jet boundary differs from free air because in the
latter case the pressure perturbation due. to the presence of a model will vanish

in general only at infinity.
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It has been known since the time of Prandtl [11] (see also Glauert {4, p.43], Garner
et al [1, p.51 and Kraft [12,p.1]) that the closed wall and open jet boundary con-
ditions (2.7) and (2.8) cause opposite interference effects in the sense that closed
walls produce more lift than free air and open jets produce less. The desire to
exploit these opposing effects to enable an interference free tunnel and to avoid
the problem of choking has led to the construction of ventilated wind tunnels at
various facilities.

The physical flow at a ventilated wind tunnel is quite complex and depends,
among other things, upon viscous and boundary layer phenomena as well as the detail
construction of the walls themselves. However, at some distance away from the wall,
the localized effects of individual slots or holes by which the tunnel is ventilated
will blend into a more homogeneous effect, thereby permitting the introduction of

homogeneous boundary condition

slotted wall boundary condition and the porous wall boundary condition. The slotted
wall boundary is physically based on an accelerative or mass effect whereas the por-
ous wall boundary condition is based on a viscous effect. However, this simple dis-
tinction seems not to be generally made. Therefore, to emphasize the underlying
principles of mechanics involved, we shall adopt in the sequel the more descriptive

terms mass effect and viscous effect.

The mass effect boundary condition may be developed heuristically as follows.
Recall that Euler's vector equation for conservation of linear momentum in a perfect

fluid is

(physical dimensions) - Vp = pa. (2.97)

If one applies this law across a ventilated wind tunnel wall over a distance 2 such

that local effects at the wall may be neglected, there results

. . . Ptunnel_pplenum dvn
(physical dimensions) 7 =0 ac !

(2.95)

where the pressure gradient has been approximated by a finite difference quotient
and where A is the average velocity component normal to the wall. Neglecting the
difference between the plenum chamber pressure and the free stream atmospheric pres-

sure (this assumption can be removed [13}), and nondimensionalizing all guantities



gives
3p _ =
pipuz- = 0, z = tn, (2.93)
where
u = £/b.

Regarding the length ratio p as an empirically determined quantity in order to
account for only part of the wall being closed, we may call p the mass effect

ventilation coefficient and we call (2.93) the mass effect boundary condition.

An alternate form of (2.93) that is often used, especially in steady flow, is

9
¢jp3% = 0, z = +n. (2.9y)

The mass effect boundary condition (2.93) was apparently first proposed by
Davis and Moore [14] in 1953. Although their basic analysis does not seem to preclude
application to other forms of wall ventilation, they were primarily interested in
slotted wall tunnels and called (2.93) the slotted wall boundary condition.

Formulas for estimating the mass effect ventilation coefficient 1 for slotted
wall tunnels in terms of the slot geometry are given by Davis and Moore [14],
Guderley [15], Baldwin, Turner and Knechtel [16], Chen and Mears [17] (see [131]),
Goethert [2 ], Garner et al [1 ], Pindzola and Lo [18], Barnwell {13] and others.

Recently, Barnwell [19] has concluded that better agreement with experiment
using the boundary condition (2.9) is obtained if u is determined by correlation
with experiment rather than if it is calculated using existing theories based on
slot geometry, etc.

The viscous effect boundary condition is based on the assumption that the
wall is porous in the sense that the mass flow rate through the wall is proportional
to the difference in pressure between the inside of the wind tunnel and the plenum
chamber; i.e.,

(physical dimensions) = pv.Vv_, (2.107)

ptunnel_pplenum Pn

where vP is a physical constant having dimensions of velocity and which depends upon
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the porosity of the wall and the properties of the fluid in the wind tunnel (usu-
ally air).

If Vp is nondimensionalized by the free stream velocity according to

Vb Ptunnel—Pplenum, (2.103)

v, VLV

and if the difference between the plenum chamber pressure and the free stream atmos-

pheric pressure is again neglected, then it can be shown that the viscous effect

boundary condition in the form

p = i?v%%, z = 4n (2.103)

follows. The dimensionless gquantity v is called the viscous effect ventilation co-

efficient. A convenient alternate form of (2.103) is

0£;+ikmﬁy%§-= 0, z = 4n. (2.10y)

The boundary condition described by (2.10) clearly represents a viscous mechan-
ism in the sense that force in the form of pressure is proportional to velocity.
Sometimes this is loosely referred to as Darcy's law [20] a la soil mechanics but
that does not seem to be an appropriate attribution in the present context. Such
a viscous effect boundary condition for wind tunnels was proposed apparently first
by Goodman [21] in 1950 for steady flow. Further investigations along this line
have been made by Baldwin, Turner and Knechtel [16], Woods [22] and [23], Drake [24]
and [25], Parkinson and Lim [26], Ebihara [27], Mokry [28], Kraft and Lo [29] and
others. Woods and Drake considered walls with finite length porous sections and
Drake considered unsteady flow but gave no numerical results for subsonic flow.

In connection with Barnwell's conclusions cited above concerning the difficulty
of obtaining good agreement with experimental data using the so-called slotted wall
(mass effect) boundary condition, we note that experimental evidence exists [26]
which indicates that the viscous effect boundary condition is more realistic for
slotted wall tunnels with narrow slots (see also [28,p.48]).

A complete understanding of the mass effect and viscous effect boundary condi-

tions has yet to be achieved. On the theoretical side, this is partly because the
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kernel of the integral equation relating downwash and pressure has not been explicit-
ly calculated for the latter. However, a computationally tractable form of the ker-
nel for the unsteady mass effect boundary condition was presented by Bland [8] in
1968. This is discussed briefly in section 3 below and further information may be
found in [5] and [9]. Extensive calculations using Bland's kernel were first

given in 1978 by us [5] and a rigorous existence and convergence theory for the nu-
merical solution method was established. While the bulk of our present analysis
centers around Bland's kernel, we present in section 4 an analysis of the kernel

for the viscous effect boundary condition for purely porous wind tunnel walls.

In section 13 we present calculations for steady airloads using the viscous effect
boundary condition over the full range of the Mach number, height to chord ratio and
ventilation coefficient v.

Most of the existing wind tunnel interference theory is founded on the incom-
plete point of view that the effect of the boundary conditions at the wall can be
determined by knowing the far flowfield characteristics of the airfoil. While this
viewpoint has produced useful and simple engineering approximations to angle of at-
tack and Mach number "corrections", it suffers by neglecting the truly coupled
nature of interference between the walls and the model. Thus, any rational theory
of wind tunnel interference must be based on an appropriate boundary value problem
in which this coupling is explicitly present. The analysis used in this report is
based on an integral equation method which correctly accounts for such coupling.

Whether the governing boundary value problem is solved directly via partial
differential equations or by reduction to an integral equation is just a matter of
computational method. However, whereas integral equations are more difficult to
formulate, they enjoy the advantage that the dimension of the space in which the
problem must be solved is reduced by one. This undoubtedly accounts for integral
equations being a frequent method of choice in subsonic and supersonic flow, and
there is now evidence [29] to suggest that in transonic flow as well, integral

equation methods may be an order of magnitude faster than PDE methods.
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§3. Bland's integral egquation

Based on the preceding discussion, the boundary value problem for flow in

a ventilated wind tunnel with the mass effect boundary condition may be completely

formulated on the lower (or upper) half of the infinite strip

Q= {(x,2)| |x|<= & 0<z<n}

using eguations (2.1)-(2.3), (2.5), (2.6) and (2.93).

transform pairs

. 1 [T -
f(s,z) = ==-J e lsxf(x.Z)dx,

—0a

£(x,2) == J e%%E(s,2)as,

-~0a

with the property that

Pf, . =
(Bx) = jisf,
it follows that
a%p ., Mk MK | A
az2 B (s—yy) (s+ PP = Or O2zzn,
',1
~ 1 —iSE
== e Ap(E)d z =0,
2 /2w p(E)d,
dp |, ~ _ B
u az + p = OI 2 =Ny

which can be solved, giving

1  Buo cosh B(n-2)o +sinh B(n-2)o
2Vor Buoc cosh Bno + sinh Bno

Pls,z)

8 pp (e at,

1 _
e
1

(3.1)

Introducing streamwise Fourier

(3.21)

(3.25)

(3.23)

(3.31)

(3.32)

(3.33)

(3.47)
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Equation (2.6) for the downwash may be restated as

1 ® isx §§
w(x) = o I e (ay)y=ods,

-0

and from equation (2.3) it follows that

Combining equations

1

o2 |
m

—o ~1

Equation (3.7)

where the kernel is

K(x,k,M,n,u)

The inverse Fourier transform (3.9) was evaluated by Bland [ 8 1following

extensive analysis.

K(x,k,M,n,u)

_ Jm isx 1io(s) Buoc sinh Bno + cosh Bno

-1
X

I S
= 2(stn) F-

>

(3.47), (3.5) and (3.6) results in

BAp (E) eis(x—E) ic(s) Buo sinh Bno + cosh Bno

- d&ds.
4 2(s+k) Buc cosh Bno + sinh Bno tds

may be interpreted as an integral equation of the form

1
K(x-E) Ap(E)dE,
=1

w(x) = an

given by

2(s+k) Buo cosh Bno + sinh Bno ds.

—c0

He showed that

i +
%% log |x|+ ETTE-(l+sgn(x))]—“—E]—E—E-a—-gh-—-}iTl exp (-ikx)
u+ — tanh kp
k
™ xl ikn X ikM%x
— gt - 0 g
En [sgn(x)S* ( Bn ) = (Bn Y lexp YA
m X 28n ikM2Zx X
en [ecsch ETTY 7;:—4 (exp 87 1) csch EEEJ
ik 1 X ikM2x mTIX
Eg[log(;-tanh ZE;) - (exp v 1) log tanh 480]'

(3.45)

(3.5)

(3.6)

(3.7)

(3.8)

(3.9)

an

(3.10)
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where
v 5n N 1 1
$(8) = ) {z— exp(-And) - — 7 expl-(n-nsl} (3.113)
_, 0 m(n->)
n=1 2
Sn = 1 ’
Y kn, 2

1+ 1+(W\n)zl[l + (ln) ] (3.115)

~ Mkn,
Ap = A /122, g, = EXE (3.113)
tan Ap + YA, = O, (3.11,)

u
==. 3.11

Y N ( 5)

Equation (3.8) is recognized as a Fredholm integral equation of the first kind.
Its kernel, given by (3.10), identifies it further as a Cauchy singular equation be-
cause of the dominant i-singularity. The remainder of the kernel consists of a
weaker, integrable logarithmic singularity followed by a continuous part.

It is well-known (see, e.g. [5,p.11]) that solutions of such Cauchy singular
integral equations are not unique unless the auxiliary Kutta condition, given in

strong form by (2.53) or in weak form by
lim|Ap(x) |< =, (3.121)
x »>17

is imposed. Then it follows also that solutions for Ap possess inverse square root

singularities at the leading edge

lim|vI+x Ap(x)|<e (3.125)
x+-1%

and square root singularities

lim| 229 (3.123)
x+1" ¥V 1-x

at the trailing edge.
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In the case of steady flow in free air, Bland's kernel (3.10) reduces to

the classical Prandtl-Glauert vortex kernel

K(xlolMlm") = % (3.13)
which consists of the Cauchy singularity alone. In this case, the Sghngen inversion
formula [30] (see also [31], [32] and [5, §82,9]) holds, and (3.8) has the closed

form solution

B8 /ix [} Jixg 1
(k=0, n=w) Ap(x) = o [ Jl 1 i v(EaE. (3.14)

In view of the above considerations concerning uniqueness, leading and trailing
edge singularities and the Sghngen inversion formula, Bland changed the unknown in

(3.8) from the pressure jump Ap to the pressure factor ¢ according to

4 1-x
Ap(x) = AT P(x). (3.15)
Then (3.8) becomes
wi) =2 [0 /EE cenyuierae (3.16)
m 1+& ! )

where K is still given by (3.10). The theoretical advantage of (3.16) over (3.8)

is that (3.16) has a unique solution with the correct leading and trailing edge
singularities. Without the auxiliary Kutta condition, (3.8) does not have a unique
solution and is thus not well posed [33,Ch.III,§6.2]. Since this reformulation of the
airfoil integral equation into a well posed problem was first made by S.R. Bland

{81, [ 9], we shall refer to (3.16) as Bland's integral equation.
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§4. Extension to porous wall wind tunnels

In a porous wall wind tunnel, the predominant mechanism by which ventilation
is resisted is viscosity. The governing boundary value problem is given by equa-
tions (2.1)-(2.6) together with the viscous effect boundary condition (2.10).
Taking streamwise Fourier transforms as in section 3 giveé the two point boundary

value problem

azp

—= - B%0%p = 0, O<z<n, (4.17)
az < - - =
AZ'LFG_EEA (£)dE, z = 0 (4.1,)
b 2/5; . P ’ r + L2
v gé-+.i(s+k)§ =0, z=n. (4.13)
dz ! 3
Solving (4.1) gives
. _ _ _1 Bvo cosh B(n-z)o + i(s+k) sinh B(n-z)o [l -isE
pls,z) = 27/ Bvo cosh Bno + i(s+k) sinh Bno Jle Ap(E)de, (4.2)

and relating ﬁ to the downwash using (3.5) and (3.6) results in

© 1 B _ . N .
W) = %_J .J Eé%ié)els(x £) io(s) Bvo sinh Bno + i(s+k) cosh Bno .00 (4 3

2(st+k) Bvo cosh Bno + i(s+k) sinh Bno
o =1
Equation (4.3) may be interpreted as an extension of Bland's integral equation

(3.16) to the viscous effect boundary condition (2.104). The kernel is given by

K(x,M,k,n,v) = J e15¥ io(s) Bvo sinh Bnoc + i(s+k) cosh Bno ds (4.4)
2 (s+k) Bvo cosh Bno + i(s+k) sinh Bno ! )

-0

and depends upon Mach number, reduced frequency, height to chord ratio and the
viscous effect ventilation coefficient.

Technically, both (3.9) and (4.4) are inverse Fourier transforms in the dis-
tributional sense [34]. For this reason, their numerical computation is not straight-

forward. However, for steady flow the kernel in (4.4) can be obtained easily in

closed form.
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Setting k = 0 in (4.4) gives

K{x,M,n,v) =

i J olsx Bv sinh Bns + i cosh @ns ds, (4.5)

2 Bv cosh Bns + i sinh Bns

-

and introducing a compressible leakage angle f defined by

1
t = == 4.7
an g ) ( )
results in
K(x,M,n,v) = %—J elsxtanh(an+i§)ds. (4.7)

-C0

For infinite height to chord ratio, n = =, and we observe that (4.7) reduces to

K(x) = %—J eisx sgn(s)ds = i, (4.8)

-0

which is the known classical result for steady compressible flow in a free atmosphere.
The integrals in (4.5), (4.7) and (4.8) do not exist as ordinary Lebesgue (nor

Riemann) integrals; instead they must be regarded as distributions. However, if we

write
1
K(X,M,ﬂ,\’) = ; + AK(X,M'n,V) ’ (4.9)
then the inverse Fourier transform,
. < .
AR (x,M,n,v) = %J e"®® (tanh (Bvs+if)-sgn(s))ds, (4.10)

—o0

for the incremental part AK of the kernel exists as the Cauchy principal value of an
ordinary Legesgue integral. Splitting the integral (4.10) into two parts, we obtain
-€

AR (x,M,n,V) = i lim(J ets¥ y,
1

————— ds
e=+0 +e2(BnS+1c)

- €

i _ .

ez(an ig) ) r eisx o2 (Bns+ig) as
l+e—2(sns+1:)

and expanding the denominators into geometric series gives

-€

AR (x,M,n,v) = i lim J
e>0

z (_l)n+l e(2n8n+1x)s+2n2;1ds

n=1

- i 1im J Z (-1)n+1 e(—2n8n+1x)s—2nclds_
€

n=1
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For s # 0, these series are bounded by an absolutely integrable function, so by
the dominated convergence theorem, integration and summation can be interchanged.

Upon taking the limit as £ - 0,

i © n-1 e2nCl e—2n;1

AR (x,M,m,V) = o= Y- (e - ), (4.117)
Bn o1 ne 3% dx
2fn 28n

which may be written as the imaginary part of a complex series

o (_e2lc)n

1
AK(x,M,n,Vv) = E;.Im nZl —7;TE;——, (4.115)
2B8n
or as a real series
1 © nn sin 2nc—5%— cos 2nl (4.11.)
AR (x,M,1,V) = =— } (-1) — BN ; !
[S11 — 2 A N2
=1 +(—
n n (an)
The last series is the sum of two series which may be summed in closed form [35,
Nos. 561, 562]. Thus, we obtain the incremental part of the kernel in closed form
as
X
exP(%TT) Bn
AK(X,M'T]:\)) = _( "_)- (4.12)
Bn 2 . = b4
— sinh ——
m 28n

Adding the Cauchy singularity gives the complete kernel,

K(x,M,n,v) (4.13)

We point out that, physically, AK represents the interference effect due to
the presence of the wind tunnel walls since

1lim AK(x,M,n,v) = O.
Moo

Thus, we are justified in referring to AK as the interference kernel for steady

flow. Also, we observe that for a closed wall, (4.13) reduces to

™ ™
K(x,M,n,»x) = 28n csch 280" (4.14)

which is a result originally given by Runyan, Woolston and Rainey [36, Appendix]

(see also Bland [9, p. 839]).
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The parametric behavior of the interference kernel and the complete kernel

can be displayed explicitly by writing

BnAK(lern:V) =..F(CIT) ’ (4~15)
BUK (e, M,n,v) = T+ F(T,T), (4.16)
where
Flz,1) = exp (g7) _ 1 (4.17)
2 . ki3 T
= sinh -1
i) 2

is a function of two parameters £ and T given by

- -1 1L - X
T tan By’ T an" (4.18)

Thus, our analysis reduces the original four parameters

Xx,M,n,v
to only three
Bn, é%, Bv .
The parameters
Bn, Bv

could be expected from the Lorentz compressibility contraction (as pointed out by
Kussner for unsteady flow (and by Glauert and Prandtl for steady flow)). The para-
meter

x

Bn
could be expected from the previous result (4.14) for closed wall tunnels and rep-

resents the ratio of the chordwise influence distance to the contracted height to
chord ratio. These results were originally derived by Ebihara [27] using the method
of images in conjunction with compressibility corrections to steady incompressible

flow (see also Mokry [28]).

The ease of obtaining the interference kernel in terms of elementary functions
can be attributed to the relative simplicity of steady flow. For unsteady flow, it
seems unlikely that the inverse Fourier transform (4.4) would admit such a pat re-
sult. 1If the singularities were removed, however, the interference kernel for un-
steady flow in a wind tunnel with porous walls might be expressible as an Qrdinary
integral. This integral, once it were obtained, could be attacked via infinite

series or via numerical integration. For analytic functions, the Laguerre-Gaussian
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quadrature rule [37] is convergent in the sense that weights W? and nodes x? are

tabulated [38] such that

o N
J e*f(max = lin ] WiE(x}).
0 e =1

On the other hand, the uniformly convergent series presented in (4.11) are not
rapidly convergent. We have found that three decimal accuracy requires tens of
thousands of terms; such behavior, even with convergence acceleration, is quite
pronounced in the numerical computation of Bland's kernel (3.10)-(3.11). This
poses the interesting question: from the standpoint of computational efficiency,
is it better to calculate the continuous part of the kernel zs an infinite series
as has been customary in the past, or is it better to compute it as a Fourier trans-
form?

For future reference, we present tabulated values of the interference kernel
and of the complete kernel in Tables 1 and 2. Two features may be noted. First,

it is easy to show from (4.17) that

lim F(z,T) = Z. (4.19)
>0
Second, we observe that
lim F(g,7) = O if oi;%, (4.201)
| 7]+
. m

%iTw F(EWT) = 0, (4.202)
lim F(I, 1) = (4.203)
0 o't T T ~4V3

Figures 2 and 3 depict the parametric behavior of the interference kernel and
of the complete kernel for variable porosity tunnels. In Figure 2, it is seen that
for £ = O (the closed wall case), the interference kernel is an odd function of
streamwise distance. Thus, upstream and downstream distances produce opposing in-

terference effects. However, the interference downwash, given by

1 .
I e
- J T+e AK(x-£,M,n,v)p(E)AE,

=1

is skewed upstream by the singularity factor

- 1-%

1+&

so that upstream pressures have a greater effect on downwash than downstream pressures.
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Also the interference kernel modifies the complete kernel so that the same pressure
produces less downwash than in the free atmosphere. Reversing the argument, the
same downwash in a closed wind tunnel corresponds to more pressure than in free
air. As ventilation occurs, the leakage angle

-1 (L

z = tan BV)

increases. This skews the interference kernel to the right as shown in Figure 2
and increases the magnitude of the complete kernel as shown in Figure 3. Thus,
increasing the ventilation causes upstream pressures to have a relatively greater
interference effect than downstream pressures, and causes the same pressure to
produce more downwash than in a closed tunnel. Again reversing the argument the
kernels shown in Figures 2 and 3 indicate that as the ventilation increases, the

airloads will decrease for the same downwash.
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Table 1. Steady interference kernel BnAK for variable porosity wind tunnels

r=§% r=00 z=150 r=300 r=450 z=600 z=750 £=900

-8.00  .124989  .124999  .125000 .125000 .125000 .125000  .125000
-7.00  .142804  .142849  .142856  .142857  .142857  .142857  .142857
-6.00 .166413 .166614 .166656 .166664 .166666 .166667  .166667
-5.00 .198780  .199671  .199911  .199976 .199994  .199998  .200000
-4.00 .244133 .247941 .249278 .249746 . 249911 .249969 .249989
-3.00 .305109 .320465 .327466 .330658  .332114  .332777  .333080
-2.50  .338078  .367819  .383275  .391308 .395483  .397652  .398780
-2.00 .363985  .419427  .452270  .471725  .483251  .490078  .494122
-1.50 .366207 .463787  .529767 .574166  .604207  .624492  .638189
-1.00  .317431  .474650 .595656 .688791 .760473  .815644  .858108
-.50 .191725 .413590 .608233  .778995  .928805 1.06023 1.17554
0 0 .261799 .523599  .785398  1.04720 1.30900 1.57080
.50 =~.191725 . 061169 .349431 .678006 1.05254 1.47944 1.96605
1.00 -.317431 -.113161 .152240 .497066 .945087 1.52719  2.28349
1.50 -.366207 =-.221694 =-.007674 .309284 .778689 1.47387  2.50340
2.00 -.363985 =-.270395 =-.112406 .154295 .604510 1.36451  2.64747
2.50 =-.338078 -.280850 -.170735 .041147  .448845 1.23333 2.74281
3.00 -.305109 -.271430 =-.197562 =-.035548 .319792 1.09915  2.80851
4.00 -.244133 -.233282 -.202359 -.114239 .136872  .852451  2.89160
5.00 -.198780 -.195485 -.183282 -.138102 .029176 .648516  2.94159
6.00 -.166413 -.165447 =-.160800 -.138445 -.030906 .486406  2.97493
7.00 -.142804 -.142528 -.140798 ~-.129990 -.062435 .359791  2.99874
8.00 -.124989 -.124911 -.124278_ =-.119133 =-.077359_ _.261871 _ 3.01659

Table 2. Steady complete kernel BnK for variable porosity wind tunnels _

C=00 c=150 C=3OO C=450 C=600 C=750 C=900

=X
N Bn
-8.00 -.000011 -.000001 -.000000 -.000000 -.000000 -.000000 ~-.000000
~-7.00 -.000053 -.000008 -.000001 =-.000000 -.000000 =-.000000 -.000000
-6.00 -.000254 -.000053 -.000011 -.000002 -.000000 -.000000 -—.000000
-5.00 -.001220 -.000329 -.000089 -.000024 -.000006 -.000002 -.000000
-4.00 -.005867 .002059 -.000722 .000254 -.000089 -.000031 -.000011
-3.00 -.028224 .012868 -.005867 .002675 -.001220 -.000556 -.000254
-2.50 -.061922 -032181 -.016725 -.008692 -.004517 -.002348 -.001220
-2.00 -.136015 .080573 ~-.047730 -.028275 -.016749 -.009922 -.005878
-1.50 -.300460 =-.202880 -.136991 -.092501 -.062459 -.042175 -.028478
-1.00 -.682569 -.525350 -.404344 -.311209 =-.239527 -.184356 -.141892
-.50 -1.80828 ~1.58641 -1.39177 -1.22101 -1.07120 -.939766 -.824462
0 *oo *oo *o $oo *oo too too

.50 1.80828 2.06117 2.34943 2.67801 3.05254 3.05254 3.96605
1.00 .682569  .886839 1.15224 1.49707 1.94509 2.52719  3.28349
1.50 .300460 . 444973 .658993 .975950  1.44536  2.14053  3.17007
2.00 .136015 .229605 .387594 .654295  1.10451 1.86451  3.14747
2.50 .061922 .119150  .229265 ' .441147 .848845  1.63333  3.14281
3.00 .028224 .061903 .135771 .297785  .653126 1.43249  3.14185
4.00 .005867 .016718 .047641 .135761 .386872 1.10245  3.14160
5.00 .001220 .004515 .016718 .061898 .229176 .848516 3.14159
6.00  .000254  .001220 .005867 .028222 .135761  .653073  3.14159
7.00 .000053 .000329 .002059 .012867 . 080422 .502648  3.14159
8.00  .000011 .000089 .000722 . 005867 .047641 _ .386871  3.14159

t
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Figure 2. Steady interference kernel for variable porosity wind tunnels
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In our previous work {5 ], two sets of orthogonal polynomials were used in
the solution of Bland's integral equation. These polynomials are computationally
well suited for unsteady flow in ventilated wind tunnels, probably because the air-
loads for subcritical Mach numbers and nonresonant frequencies are well-behaved
parametric extensions of the steady free air case which they solve so elegantly
in closed form. From a theoretical viewpoint, they have unique mathematical pro-
perties which provide efficient use of the abstract geometrical structure of the
underlying Hilbert spaces of downwash and pressure functions. This section briefly
summarizes some of their features. For additional information, see Bland [8 ] and
[9]1, Ivanoff [7, Ch. 2 ], or Fromme and Golberg [5 ].

Consider the case of steady flow in free air. A completely symmetrical theory
between downwash and pressure will now be presented for this special case. To do

this, (3.14) and (3.16) are viewed as a solution pair

1{! At 1 B
o Jl e ;:E-w(s) dg = w(x), (5.1}
1t e 1 _
- J Tt Eo W(E) dE = V0. (5.1)

-1

This may be written more briefly in operator notation as
HY =w, (5.21)
H1lyw=y. (5.25)

A sequence of linearly independent solution pairs to (5.2) is given by

H Y, T o= 1,...,%, (5.37)
Bl o =y, n=1,...,% (5.35)
where 1 -1
cos((n-T)cos "x)
1 2
un(x) = Y 1 , (5.471)
m cos(Ecos'lx)
. 1 -1
Y o = 1 51n((n—2)cos X) (5.45)
n /T )

sin(%cos'lx)
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These functions satisfy the following recursion formulas

1 1
al(x) = /#, ap(x) = j#(—l+2x),..., an+2(x) = 2X an+l(x)—an(x), (5.571)
Yl(x) = /%, Yz(x) = J%(l+2x)""' Yn+2(x) = 2x Yn+l(x)-Yn(X), (5.55)

and are therefore polynomials. We call an and Yn the nth downwash and pressure poly-

nomials, respectively. Collectively they are called airfoil polynomials. Their n-1

zeros are given by

n n 2im .

an(xi) = 0; X, = -cos opoli 1< 1,..., n-1; n>2, (5.61)
n n 2im o,

Yn(Ei) = 0; gi = cos — 1= 1,..., n-1; n>2, (5.62)

and are interdigitated according to

n n n n
-1 < < < ... < < < 1. 5.
et ™® 81 <%y <L (5-63)
One of the more striking properties of the airfoil polynomials is that they are
orthogonal with respect to reciprocal weight functions with leading and trailing edge
singularities:

v
J /Hﬁa (o ()dx = §_, (5.77)
m n

1-x mn

1

( /1——;?
J i:;—ym(x)Yn(x)dx o (5.75)

-1

1}
7]
.

This leads to two generalized Fourier series representations, one for downwash, the

other for pressure. To see this, define two complex Hilbert spaces

1
2
L2 = {£:0-1,11~+¢]| J /{% |£(x) ] ax<w}, (5.81)
=1
5 I g 2
L2 = {f:0-1,11 > T |E) | dx<el, (5.85)
=1

called downwash space and pressure space, with respective inner products
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1 f1+x ~
<t.g> L J 1o E(0Fx)ax, (5.91)

1
1-x -

J T f(x)g(x)dx, (5.95)

21

<f,g'>_Y

and norms

el = /<€.85 . (5.10))

||fHY EE (5.10,)

It can be shown that {an} and {Yn} are complete orthonormal bases for LOZL and Li,
respectively. Therefore, an arbitrary function in either space can be represented by

generalized Fourier series using airfoil polynomials; i.e.,

(o]

¥ < >

%1 007, O (5.113)

) <E,y > Y. (5.115)
mY ‘m

m=1

fel2 => £
o

fel? => £
Y

Referring to the solution pair given by (5.1), we see that for steady flow in
free air,

oo
2 = 2 = < >
weLa > weLY & W ) W > Y {5.1279)
m=1
(o]
2l2 => 2 = >
P LY wcLa & w m£l<w,Ym Y @ - (5.125)

Thus, in this fundamental special case, the pressure Fourier coefficients and the

downwash Fourier coefficients are exactly equal; i.e.,

<\[,|,'ym>,Y = <w,am>a, (5.13)

thereby providing an elegant and computationally powerful reformulation of the Sghngen

inversion formula.

Another way of viewing the result (5.13) is that if ¥ and w satisfy (5.1), then
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they have the same length, or norm, in their respective space; i.e.,
my = w=> [yl = lTwll (5.14)
In general, if T is a linear transformation between two Hilbert spaces Hl and Hz,

T:H]_—)'Hz, (5.15)

and if we define the operator norm of T as

ol = suwe [[==| , (5.16)
=t =1
1
where ]]Jli is the norm on Hi i=1,2, and if
r
i = 1, (5.17)

then we say T is an isometry. By (5.13), H is an isometry; i.e.,
[la]} = 1, ||]g7}| = 1. (5.18)
An isometry is an abstract generalization of a length preserving transformation and
enjoys generalized properties of orthogonal, or unitary finite dimensional transform-
ations. If T is defined in general as above, then the adjoint of T is the operator
T*:Hz > Hl (5.19)
such that

<T*x,y>1 = <x,Ty>s (5.20)

for every xeH; and yeH,, where <.,.>; are the inner products on Hi' i=1,2. 1t follows

(see [5] for details) that the adjoint of H is its inverse; i.e.,

H* = H L. (5.21)
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2 2 -
feLa & gELY => <f,Hg> = <H 1f,g>Y,

which is useful in reverse flow formulations.

Certain specific Fourier expansions in terms of airfoil polynomials will be

useful in the sequel. Let

log, &

Then it has been shown [ 8] that

<lo o >
9%’ %"

<lo o >
T%'%n" o

<lo >
glen Y

<logx ’ ‘Yn>‘Y

These results are used in the solution of Bland's integral equation.

ff

i

log lx—gl.

Y (x)
n+l 1 _
" (1092'2)Yn(X), n=1,
Yn+1(X) Yn(X) Yn_l(x) .
2n ~ 2n(n-1) 2(n-1) * =1
o (x)
+1 1
—£§H~—— + (log2—§0an(x), n=1,
an+l(x) ) an(x) an_l(x) v
2n 2n(n-1) 2(n-1) ' nze.

volving flaps, jump functions and their powers given by

are employed.

Fourier coefficients.

<<x—a>k

Y > =
n'y

<x

k
>7 =

To evaluate

1!
m

Ja

(max(O,x))k

1-x

k
1ix (x-a) yn(x)dx,

use the changes of variables represented by

Since

X =

cosf, a = cosea.

i
|
"

=
+
bS]

2

. -]
2 sin 5

sin ©

(5.22)

(5.23)

(5.241)

(5.242)

(5.243)

(5.24,)

For problems in-

(5.25)

We briefly indicate the method of computing their airfoil polynomial

(5.26)



and
. 1
1 s1n(n—506
Y (X)) = m————
n /T ogin T o
2
it follows from the elementary identity
2 sin o sin B = cos(o-B) - cos(a+B),
that
k 1 ea k
<<x-a> ,Y > = = (cos B6-cos 8 ) (cos(n-1)0-cos nO)dsb. 5.27
Yu ¥ Jr J a ) ( )

0

The advantage of (5.27) over (5.26) is that the integrand

F . (0) = (cos 6-cos 8 )k(cos(n—l)e—cos nb)
nk a

is an analytic function everywhere on [o,ea] and therefore (5.29) can be computed ac-

curately and conveniently using ordinary Legendre-Gaussian quadrature. Thus,

N
k Ba N N
<Cy=-a> > = — A 9 +
x=a> Y ¥ Ny izl lFnk(xi a) En/

N N . . .
where Wi and xi are weights and nodes of the N point Legendre-Gaussian quadrature rule,

and where

2N+1 b
_ 2 (N!) (2N) — "y
BN % (2N+1) (2N1) 3 Pk (®), o<e<ea
is the error [37,88.5]. The integrals (5.26) can be determined in closed form, although

they are increasingly cumbersome for larger values of k. The following closed form in-

tegrations are noted.

0 _1 .
—a> > = = - 5.28
<<x-a>f,y v /;.(ea sinb ), ( 1)
1 sin(n—l)ea sin nea
<<x_a>0’Yn>Y = 7? ( — - - ), n>2, (5.285)
1 ea sin 26a
<<x-a> > = = ; .2 _
<x=-a 1Yy ¥ v (sin Ga 5 2 )
- L os 6 (0 ~-sin6 ) (5.2917)
Jr cos a'Va al’ . 1
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sin 6 sin 26 sin 36
a a a

1 .6
<<x-a> > = = (== - + - \
x-az,y,> = = 5 2 2 6
sin 28
1 .
- f? cos B84 (sin 0, - 5 ), (5.295)

sin(n-2)6 sin(n-1)6 sin n6 sin(n+1)6
a a a a

1 \
e T oem T T 2een T T T T 2men )

<<x-a> >
rYn

sin(n-1)86 sin n6
- l-cos 6 ( a_ a) n>3
/r 8 fa » nz3

n-1 n (5.293)

We also note for future reference the Jacobi-Gaussian quadrature formulas [37]

— N N+1
1 (1 /1+ 14x3 N+
;-J E:z-f(x)dx = ——’—‘éi—-f(xn LysEy (5.30;)

-1 n=1 N+=
2

— N N+1
1 Jl /1—x 1-£% N+1
= == f(x)dx = ) £(E) Y4B, (5.30.)
™ ) Vv 1+x n=1 H+% n N 2

+ +
where the nodes g? L and x? L are the zeros of the airfoil polynomials Ot and YN+1

as given by (5-6), and where the error E_ for continuous functions is proportional

N
to the 2Nth derivative of the integrand at some point in the interval (-1,1).
Sometimes it is desirable to convert from one airfoil polynomial basis to the

other. Referring to (5.5), it is easy to show that

ay = yqr (5.314)
ap = 2y] + Y2 (5.315)
az = 2y1 - 2v2 + Y3« (5.313)
ay = 2y] + 2y2 - 2y3 + Yy (5.314)
a5 = 2y] - 2y2 + 2y3 - 2Yy + Y5s..- (5.315)
and
Yy = %1 (5.327)
Yy = 207 + ogr (5.325)
Y3 = 2a3 + 209 + agr (5.323)
Yy, = 201 + 20 + 2a3 + oy (5.32y)
Y5 = 2a1 + 2ap + 203 + 20y + Og,.--. (5.325)
From (5.29 and (5.30), it appears that
n
%41 T Yo T 2RE1 (_1)m+1Ym7 n=le2,.. (5.331)
n
Y = q +2 ¥ a ;i n=1,2,... (5.335)

n+l n+l m=1"m
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and in matrix notation that

e F o o o o 1 F.Yl-
o -2 1 0 0 - Yo
a3 2 -2 1 0 0 s Y3
ay| =1| -2 2 -2 1 0] Yy ' (5.347)
os 2 -2 2 -2 1 Ys

B 1 0 0 0 0 a
Yo 2 1 0 0 0 ... o
Y3 2 2 1 0 0 e a3
yol =1 2 2 2 1 0 oy | (5.345)
'Y5 2 2 2 2 1 0.5
-1 L : JL -
or, more briefly
{a_} = 6> 1{a_}, (5.357)
n mn n
— Y
Iy } =16 e ). (5.355)

The problem of computing downwash from discrete displacement data will entail
interpolation procedures and, differentiation as well. In any ascending polynomial
basis, transformation matrices such as (5.34) will be lower triangular and when
differentiation is performed they will be lower subtriangular. By differentiating the

polynomial expressions (5.5) and recombining, one easily obtains

.



a; = 0,

oy = 207,
aé = 201 +
ay = 40y +
o = 4a; +
Yi = 0,

Yo = 2Y1,
Y3 =-2y; +
Yi = 4yy -
Y5 =-4v) +

From this, it appears that

and

t
[¢ ]
n+1

in general

A

-a
n

400,

-30~-

20p + 6037

6a, + 203 + 8Bay,.-

4Y2 ’
2yo + 6Y3¢

6Y2 - 2y3 + 8yy,--.

+ 2n

n n+m
+ 2n m§1 (-1) Yo' ?

NN O

A
Z

m=1

w = N O O

H w O O O

Q

i

» O O O ©

& O O O O

n=12,...

Qg ...
0 ...
0 ...

o O O o ©
.

)
G3
Oy
G5

(5.367)
(5.365)
(5.363)
(5.364)
(5.365)

(5.377)
(5.375)
(5.373)
(5.37y)
(5.375)

(5.381)

(5.382)

(5.397)

(5.395)



-31-

Thus we may write the infinite matrix equations

T — u :
{an} = [Dmn]{an}, (5.401)

{y_}* = mf 1y}, (5.40,)

where the differentiating matrices [Dzn] and [D;n] are as shown in (5.39). For higher

derivatives, we have

{o 3 o p® 1Ky g, (5.41;)
n mn n

}(k)

Y (k)
Iy, o 17 {v 1 (5.41,)

where (k) refers to the order of the derivative on the left hand side and to the power
of the differentiating matrix on the right hand side.

Formulas expressing derivatives of the airfoil polynomials in terms the airfoil
polynomials can also be derived in general by making use of their Fourier series pro-
perties.1 Since the derivative of a polynomial is a polynomial of one degree less, we
have ' n-1

a;(x) = Z <a;,am>aam(x),
m=1

where the Fourier coefficients are given by

1 1+x v
' = ———
<an,a >a = J /l-x ah(x)am(x)dx.

Referring to equation (5.4), the substitution

x = cos 0,

together with the use of elementary trigonometric identities leads to

<@ a > = — .
2 sin ©

' 1 1, sin(n+m-1)0+sin(n-m)0
, ({n-3)
n’ma )

cos (m+n-1) 6+cos (n-m) 6
l+cos ©

- % )d8, 1<m<n-1. (5.42)

ls.r. Bland, private communication, dated 3 August 1977.



-32~

The tabulated integrals [39,p.366]

slal<1

1 {7 sin né
= j EEﬁLll_ de = 0 if n is even,
L sin 06
b
l—J sin 08 49 - 1 if n is odd,
T sin ©
1 " cos ng 6=, 1 ,Vl-az—l)n
™ 0 l+a cos 8 Y1i-az! a

permit (5.42) to be calculated in general. .Since for every pair (n,m) of integers,

precisely one of n+m-1, n-m is odd, it follows that

T

dae =

1 [ sin(n+m-1) 6+sin (n-m) 8
™ n
J

sin 0

By evaluating the limits

1.

de

. 1 Jﬂ cos (m+n-1) 6+cos (n-m) 6
lim p

l+a cos 8
a1l 0

= lim

+n-— —
a1~ Vi-a2 a& " 1 Vi-a2z 2"

one obtains

1 " cos(mtn-1) +cos (n-m) o
T Jo l+cos 8

( E:;E_l)m+n—l . ( E:;E—l)n—m‘

/s

as = (-1)" " (em-1).

Tn this manner, the following general formulas result,

<a',0.> =0 if m>n,
n""ma —

<a',a > = n+m-1 if m<n & n-m
n mo

<a',0 > = n-m-2 if m<n & n-m
n"ma

<vy! > =0 if m>n

Yn'Ym v 1,

<y! > = n+m-1 if m<n & n-m
Yo' Ty

<y', Y > = n+m+2 if m<n & n-m
n’ 'my

which verify (5.39).

is

is

is

is

odd,

even,

odd,

even,

(5.437)
(5.435)
(5.433)
(5.43,)
(5.435)

(5.43)
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Although it appears that Bland was the first to make extensive application of
the properties of the airfoil polynomials in unsteady flow problems, their use for
solving singular integral equations goes back at least 40 years. In this-regard
we make the following historical observations.

First it can be shown that they are suitably renormalized Jacobi polynomials.
Multhopp [40] (see also [41]) utilized Jacobi polynomials as early as 1938 to per-
form chordwise numerical integration on the problem of steady three dimensional flow
over wings. This is the origin of the successful technique of interdigitated col-
location and quadrature points used later by Hsu [42] and others for unsteady flow,
and in the special case of one collocation point it reduces to collocating the down-
wash at the three-quarter chord.

The fact that H is unitary was apparently first shown by Akheizer in 1945. We
became aware of this fact through the recent publication of Ivanov's book [7, p.133].
This result was obtained using the fact that Han = Yn' This important property occurs
as a particular case of a result given by Tricomi in 1951 [31l] (see also [43]) who in
turn refers to Sz&€go's book, first published in 1939 [44].

In the western aerodynamics literature the specific form of the pressure poly-
nomials first appeared in a 1967 paper on unsteady narrow channel flow by Bland,
Rhyne and Pierce [10] and their properties were further developed in [8]. (See
also [9].)

In view of the above observations it seems appropriate to name the transforms

H

and

as the Akheizer-Bland transforms.
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§6. Solution by collocation of the integr,

1 equation

Assume waLi and weLz. Let Bland's integral equation (3.16) be written in

operator notation as

TY = w. (6.1)

Since the pressure polynomials {yn} are a complete orthonormal basis for the pressure

2
space LY. we have
«©

Vo= L <vy >

n=1 i

Because of this, we seek an approximate solution wN to (6.1) of the form

N
where {anN} =] 2Ye o be determined. Substituting (6.3) into (6.1) gives

by
Z a N Ty, * g = W (6.4)
n=1

where

N N

is the resulting downwash residual error. The general collocation equations are

that

Yo' (6.2)

Y. s (6.3)

r =w Ty = T(w—wN) (6.5)

r (x)=0; m=1,..., W (6.6)
N m

where 1 X }? are the collocation points. Equation (6.6) may be written in matrix

form as

i 1{a_} = {w(x )}, (6.7)
mn nN m

where [C:n] is the NxN collocation matrix given by

& = (Ty ) (x ). (6.8)
mn n m

To compute the collocation matrix, it is convenient to split the operator T into
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three

g
R
t
7]

= + .
T H KL + Kc, (6.9)
where H is the Akheizer-Bland transform, where KL is given by

ik [ 1-E
(K_f) ({x) = —- === lx-£l£(EYAE,
(K £) (x) 7B2 11 / Tz o9 Ix-Elf(E)dE,

and where Kc is the remaining part of the transformation with continuous kernel,

__ L[V /1-g -
(ch)(x) =7 J 1+E Kc(x EYE(E)AE. (6.11)

In Bland's collocation method, the collocation points xy are selected as the zeros

xg+1 of the downwash polynomial o The unitary and logarithmic parts are then

N+1°
computed exactly by (5.3) and (5.24), and the continuous part is computed approxi-

mately by (5.30) using N point Jacobi-Gaussian quadrature. Thus,

N+1
. N 1-£,
N N+1 ik 1 N+1 _N+1 N+1 N
= - =< >+ - . .
Cmn 0Ln(xm ) g2 1°ng+l' Yn Y .Z 1 c(xm Ei )Yn(gi )+Emn (6.12)
™ i=1 N+§

The collocation solution is then completed upon solving (6.7) using (6.12) and the
known downwash.

For closed wall wind tunnels, Bland [9] observed that (6.12) produced rapid
convergence with N for smooth downwashes but offered no proof of convergence. In
[5], we observed similar convergence characteristics for ventilated tunnels and
established a rigorous proof of convergence of the method based on a three-way
equivalence between collocation, complex least squares and Galerkin's method. Spe-

cifically, we showed that solving (6.7) using (6.12) gives

lim a
n
N-»c0

= <1p’ 'Yn> (6.13)

N Y

under very general conditions. In section 10 below we present a direct proof of
convergence with sharper error estimates and discuss the computational problem of
weak convergence in the presence of flaps. 1In section 11, we discuss various
methods of accelerating convergence and show that a 500 fold reduction in error
can be achieved for flaps with approximately a 20% increase in computing time.

In section 12 we demonstrate an improved method of computing Cﬁn for unsteady

flow which reduces quadrature errors in (6.12) by approximately 1000.
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87. Computation of airloads

7.1 Basic eguations

Once the Fourier coefficients <d},Yn>Y are known, it is an easy matter to

compute pressures from the expression

4
bpx) =5 [ n§1<w,v>Y AACI (7.1)

Let the lift and moment coefficients be defined as in Ashley [45,p.53] according to

_ 1 2 =1 2 o =
L = E'Dmvoo s CL' M= E—pwvm s C CM' (7.2)

where L denotes lift, M denotes pitching moment about the quarter chord, positive
in the direction of increasing angle of attack, S denotes planform surface area,

and where ¢ denotes mean aerodynamic chord. Then for an airfoil the lift and moment

coefficients and center of pressure reduce to

1 {1 2/
CL =3 Jl Ap(x)dx = 8 <lb:Yl>Y. (7.3)
1 Vr-
-1 1 - _ Y
CM = 2 jl (x+50Ap(x)dx = 26 <w,yé>y, (7.4)
C
1 M
X, == = = . (7.5)
CP 4 c

These particularly simple formulas involve only the first two pressure Fourier co-
efficients because of the orthogonality properties of the airfoil polynomials, and
are among the most accurately computed quantities in the TWODI program.

The aerodynamic work matrix is useful in the solution of aeroelustic problems.

Let the displacement function be expressed formally as
h(x,w) = 21 q (@) by (x) (7.6)
m=

where hm are displacement basis functions and qm are generalized coordinates in the

sense of Lagrange's equations. Then the components of the aerodynamic work matrix
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are given by Y
=1
or eguivalently by
1
A =3 J T2 n Gy ax, (7.8)

-1
where wn represents the pressure factor corresponding to the displacement function
hn' The components of this matrix depend upon the particular deflection basis used
(which in practice is often selected as the in vacuo vibrational eigenfunctions)é

’

We will assume that all displacement functions and their derivatives belong to La
. . . 2 R .

that is, each hn has a downwash function in La Expanding both wn and hn in the

pressure Fourier series, and integrating, (7.8) becomes

(7.10)

’

= L , .
[Amn] = > [<hlen>] [\wlen’_Y]*

where * denotes the complex conjugate transpose.
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7.2 Energy properties of the airfoil polynomials

In our earlier report [5], we compared the results from the TWODI program
against the exact Sghngen and Kassner-Schwarz solutions, and made a precise deter-
mination of the accuracy of TWODI. Originally, we used the downwash polynomials
as a basis for the deflections and calculated the integrals for the aerodynamic
work matrix using numerical integration. We have since observed that if one
selects the pressure polynomials as the displacement basis, then the aerodynamic
work matrix in steady free atmosphere flow is upper triangular with zero diagonal

elements. To see this, choose the displacement basis functions as the pressure

polynomials
h =y ;n=1,2,... (7.11)
n n
Then the downwash functions
v = Yn' (7.12)
are readily found to be
wy; = 0, (7.137)
wo = 207, (7.135)
w3 = 60y, + 4o0g, (7.133)
wq = 1203 + 10cp + 6ag, (7.13y)
W5 = 20(!1 + 1802 + 14C!3 + 8(14,.-., (7.135 )
using (5.33) and (5.34). Using (5.12), the pressures Apn corresponding to each of

the above W are given by

8 [l-x
fe1 = g /e O Y
8‘/1—x
bpp = g [T (1104 (7.14,)
_ 8 [l-x (3v1+2Yv2),
Ap3 = BV 14x (7.145)
_ 8 [1-x
bey = 5 /35 (6Y1+5v2+3Y3) , (7.14)
8 [fl-x
Aps = o/ Tax (L0Y1+OY2+7Y3+8Y4) /- (7.145)
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Therefore, by inspection, the 1lift and pitching moment coefficients and center of

pressure are given by

CLy = O 1 Cy =0 (7.157)
a4l —

C, = g ¢ Cy, = O , Xy = .2500, (7.153)
_ 12Va el =

CL3 = B’ CM3 = g x3 = .5833, (7.153)
247 1ovm —

Cho = "B v Cw, = g ¥u = -6667, (7.154)
_ 40T _ o 1s/m = _

CL5 = 8’ CMS = - 8’ x5 = .7000,... (7.155)

and the aerodynamic work matrix is
[0 1 3 6 10... ]

A 1= 0 0 o0 3 7... . (7.16)

cvho
SR
v o
o
o

Because the components Amrl represent the work done on the structure as it de-

forms in mode m against the pressure due to mode n, it follows that for steady free

atmosphere flow, zero aerodynamic work is done on the structure as it deforms into

the pure shape of any of the pressure basis functions. The first column Aml is

trivially zero because the pressure is zero in steady vertical translation. The

second column Am represents the work done as the structure deforms in its various

2
modes against the pressure due to the second mode. In the second pressure mode,
only the first deflection mode produces work on the structure, and since the second
displacement mode represents a flat plate at uniform angle of attack, the element

Al2 corresponds to the 1lift coefficient derivative CLa' The diagonal element

A22 represents the work done in pitching the airfoil about the node of mode 2; since
this node and the center of pressure are both at the quarter chord, no aerodynamic
work is done. Similar interpretations involving the flexible modes may be made for

columns 3,4,...
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7.3 Transformation properties of unsteady airloads

If the unsteady airloads are known with respect to one set of structural (dis-~
placement) basis functions, then they can be computed with respect to any other set
of basis functions, provided the transformation from one basis to the other is known.
This is a direct consequence of the invariance of airloads under change of basis.

To see this, let {hm} and {ﬁm} be two bases for the Hilbert space Li of airfoil
displacements and let {qm} and {&m} be their corresponding generalized coordinates.
Then © ©
hix,w) = mzlqm(w)hm(X) = mzl q_(mh_(x) (7.17)

(Throughout this subsection, we will regard all infinite series expressions in a
formal sense.) Due to the assumed linearity of the problem, the pressure factor de-

pends linearly upon the displacement and may be expressed as

RTINS

where wm and @m represent the pressure factorsdue to hm and ﬁm' respectively. Simi-~

larly, the lift and pitching moment coefficients are given by

o o

CL =) 4nCry = ) Gn Cp s (7.19)
m=1 m=1

(=] <«
Cy =] Im CM = L an Chpy (7.20)
m=1 m=1
where CLm and cMm' and CLm and CMm represent the 1ift and pitching moment coefficients
due to hm and ﬁm’ respectively. The components of the aerodynamic work matrix are
given by
1M1 A 1 .
== d == ag. 7.2
Bn T 2 BVnder A = 3 Bb,de (. 1
=1 -1
To establish the transformations between airloads in the {hm} basis and the
{ﬁm} basis, we utilize the transformations (assumed known)
«© 0
h = ) H h,h = ) H h (7.22)
m mn n m mn n
n=1 n=1
between these bases. Clearly these transformation matrices are the inverses of

one another
(o] oo

L Hpm B S m_zl Hom Ban™ On” (7.23)

m=1
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Substituting (7.22) into (7.18)-(7.20) and equating coefficients of generalized

coordinates gives the transformations between pressures and section coefficients,

b= L Hp b v = L H VL (7.24)
n=1 n=1
- .
L, = nzl B Cp. Cp = Z B Lo (7.25)

Criy

1]
Il ~18
o

S . .
- Cuye Gy nzl B Cu (7.26)

Combining (7.27) and (7.21), we immediately obtain

1 -2 ~ o © . 1 ,— 5
J g 'm0 96T kzl EZZL i I /T B g o8 Aop (7.277)
PAE GG -3 a i
J 17t "m a5 T kgl P J 1+£ b Vg 98 Hyp (7.273)

Thus, the components of the aerodynamic work matrix transform according to a Ccongiau-

ence inansformation: i.e.,

a =5 J A, A,H, A =) Z H (7.28)

mn T Ly gfy Tk e Tl Ban Tl P Bl Tl

These transformations may be stated in matrix notation as
{wm} = [Hmn]{wn}, {wn} = [Hmn]{wn}, (7.29)
{eg,t = iy b, {og,} =y 1{cp 1, (7.30)
{cypt = (B 1{Cy }, {Cy } = (H 1{Cy }. (7.31)
A 3 =18 1tA 108 17, (A 1 =[5 10 1[H 1 (7.32)
mn mn mn mn min mn mn mn .

The above results are valid for an arbitrary pair {hy}, {h,} of bases for Hy.

The special case {ﬁm} = {yg} is of particular interest. Since in this case

Hoo= <hm'Yn>Y' (7.33)
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it follows that

{y 1= [<hm,yn>Y]{wn}, (7.34)
{c b = [<hm.yn>Y]{an}, (7.35)
{CM?“} = [<hm'Yn>Y]{CMn}' (7.36)

1 T
= = 7.37
(Amn] > [<hm,yn>Y][<¢m,yn>y]*[<hm,yn>_¥] . (7.37)

The formulations (7.34)-(7.37) have the advantage that the particular deflection
basis{th-can be factored from the solution process. In addition, the correspond-
ing vector of downwashes may be computed by transforming the deflection basis to

the downwash polyncmials using (5.35)
a . d . Y Y 4 .
_— = {(— + = — +
(dx+1k){ym} (T + ik [Gmn]{an} e 13 J.k){an}
and then differentiating using (5.40;) to obtain
(S viky{y } = 167 1% +iks_1{a_}, (7.38)
dx m mn mn mn n
or eguivalently, by differentiating first using (5.405)
(S 4 ik {y } = (D +iks_ 1{y }
dx m mn mn n
and then transforming to the downwash basis functions to obtain
S+ ix {5 } = (Y +iks_116Y 1{a_}. (7.39)
dx m mn mn mn n

Since all matrices in (7.38) and (7.39) are lower triangular, the resulting matrix

product

v

W 1= [GY ][D* +ik§ ] = [D' +iks 1[G ] (7.40)
mn mn mn mn mn mn mn
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Following (7.38),

1 0 0 0 0 0 0 ... ik 0 0 0 0 0 0 ... |
2 1 00 0 0 0 ... 1 ik 0 0 0 0 O ...
2 210 0 0 0 ... 1 2ik 0 0 0 O ... A
X 2 2 21 00 0O 2 1 34k 0 0 O
Win! =21 2 2 2 2 1 0 o 2 3 1 4 ik 0 0 :
2 2 2 2 2 1 0 3 2 4 1 5 ik 0
2 2 2 2 2 2 1 3 4 2 5 1 6 ik
Following (7.40),
ik 0 0 0 0 0 0 ... | [ 1 0 0 0 0 0 0... |
1 ik 0 0 0 0 O ... 2 1.0 0 0 0 O...
-1 2 ik 0 0 0 0 ... 2 2 1 0 0 0 O...
mmn]=2 2 -1 3 ik 0 0 © 2 2 2 1 0 0 0 .
-2 3 -1 4 ik 0 © 2 2 2 2 1 0 0
3 -2 4 -1 5 ik 0 2 2 2 2 2 1 0
-3 4 -2 5 -1 & ik 2 2 2 2 2 2 1
One obtains the same result both ways.
(ik 0 0 o 0o ... ]
1+2ik ik 0 0 ...
X 3+2ik  2+2ik ik 0 o ...
Wl = 2 1 6421k s5+2ik  3+2ik ik 0
10+2ik 9+42ik 7+2ik 4+2ik ik . (7-41)

The matrix [@mn] represents the linear transformation of downwash from the deflec-

tion basis {ym} to the downwash basis {un}.

4, . P
(a;“*lk){Ym} = [Wmn]Lan}

It is nonsingular if and only if the frequency is nonzero.

(7.42)
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Referring back to equation (7.21), we see that the aerodynamic work matrix
corresponding to this basis is given by

=1
(B, =5 [<by > 1% (7.43)

where @m satisfies Bland's integral equation for the basis function ﬁm = Yp

a . o
(T *ikdy, =T . (7.44)

In the special case of steady flow in an infinite atmosphere, (5.13) states
that the Fourier coefficients of pressure in the basis {Yn} must equal the Fourier

coefficients of downwash in the basis {an}7 i.e.,

~ d N
= < (— s =
<1”'m"Yn>Y (dx-klk)Ym'an>a wmm

This gives

1 ~
(k=0 & n=w) Ay =5 M 17, (7.45)

which reduces by inspection to equation (7.16) that previously was derived without
benefit of the above matrix developments.

In general the aerodynamic work matrix is nonsymmetric. Physically this is
because the interaction between the air and the airplane structure is nonconservative.
Mathematically it cannot be guaranteed that an arbitrary nonsymmetric matrix is con-
gruent to a triangular matrix. In other words on purely mathematical grounds there
need not exist a deflection basis in which the aerodynamic work matrix is triangu~
lar. However it has been shown above in (7.16) and (7.45) that if the pressure poly-
nomials are used as a deflection basis then the aerodynamic work matrix is in fact

upper triangular for steady flow in an infinite atmosphere. At the present time,

the meaning of this result is not fully clear, but it does cast the airfoil polynom-
ials in a special role.

A somewhat more abstract algebraic interpretation may be given to the transform-
ation properties (7.29)-(7.32) of the unsteady airloads. In the case of linear
aerodynamics, the pressure factor depends linearly upon the airfoil displacements.
Therefore, by the Riesz representation theorem, the vector space L% of pressure

factors is contained in the dual space Li* of airfoil displacements

2 2
Ly c: L7*
Y5
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In this regard the section coefficients are functions which map elements of the

dual space Li* linearly into the complex numbers
CL:Lﬁ*—*C

Cu

2y
Lh > C

In the same regard, the aerodynamic work matrix is a function which maps pairs of
) . 2 . 2 s
elements from the vector space of displacements Lh and its dual space Lh* bilin-

early into the complex numbers, i.e.,

(Ap,] = L2 x Lg* ~ c.

and is therefore a mixed tensor of contravariant order 1 and covariant order 1 rela-

tive to LZ [op cit].
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88. Representation of airfoils with multiple controls

In section 7 we discussed how unsteady airloads can be calculated for a general
airfoil displacement in terms of the airloads corresponding to an arbitrary displace-
ment basis and that certain advantages accrue if the airfoil pressure polynomials
{vp} are used as the canonical basis for displacements. This section describes how
displacement functions {hm} poséessing discontinuities of the type found with multi-
ple leading and trailing edge controls can be specified by discrete input data, and

how the matrix of Fourier coefficients
[Hpnl = [<hm,Yn>Y]

can be calculated for such functions.

8.1 1Input data specification of displacements

Consider an airfoil displacement function of the type illustrated in Figure 1.
Such a function may represent an upper, lower or mean profile. There may be multi-
ple leading and trailing edge controls with sealed gaps. Discontinuities in the
first derivative of the displacement function usually correspond to control deflec-
tions. Discontinuities in higher derivatives correspond to changes in curvature due
to design and/or aeroelastic effects such as changes in stiffness properties, etc.
Values of displacement will be specified at Ny distinct points

Xl,...,XNx

which are called nodes. We shall assume without loss of generality that nodes are

labeled from left to right along the chord.

Xl<---<xNx (8.1)

The number of nodes may range from a minimum of one to some finite number Ny ’
max

1SNg<Ny . (8.2)

In addition, nodal values of Nh different displacement functions

hll" .. ,thx,. "’hNth
are to be given as input data. Some of the nodes may also be hinges at which dis-
continuities in derivatives of displacement can occur. Hinge points must lie strictly

between the leading and trailing edges.
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—1l<xpm)<... <me6<1 (8.3}

The total number of hinges may range from zero if there are none to at most

N .
Smax

O<N§Nsmax (8.4)
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8.2 Subdivision of the chord into line elements

This subsection describes the procedure for computing interpolation functions
of airfoil displacements with hinge type discontinuities. The scheme employed
subdivides the chord into line elements and is illustrated in Figure 4 for two

hinges.

T
~—

l

x (1)... (1= xl(2).-.

1 XN (1) Xy (3)(3)
*x x

Figure 4. Subdivision into line elements

The number of line elements along the chord equals one more than the number

of hinges.

Ne =1 + Nd (8.5)

If there is only one element, the element domain lies between the leading and
trailing edges.

Q¢ = {x : -l<x<l} if e=1§N, =1 (8.6)

If there are more than one element, the first and last domains lie respectively
between the leading edge and the first hinge, and between the last hinge and the
trailing edge.

Qe = {x ¢ -l<x<xpy} if e = 1 & Ng>1 (8.7)

Q. = {x : xq

W x<1} if e = Ny & Ng>1 (8.8)

O



o
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All remaining domains are bounded by hinges.

Q = . <5< :
o {x : xne_1 X xne} if l<e<Ne. (8.9)

For theoretical purposes, these domains are disjoint, i.e.,

Qa; O Qy, = ¢ if ey # ey,

1 e

their closures intersect only at hinges,

Rep M Rety = {xyg

and the interior of the union of their closurese
the leading and trailing edges.
Qe) = {x:-1l<x<1}.

These properties are those required of finite element models [47,Ch.6]. Thus,
the interpolation procedures for the present method of solution in TWODI are con-
sistent with the finite element method. The advantage of the element by element
formulation above is that the interpolating functions for each element may be de-
termined separately and by a uniform procedure.

The numbers N, (e) of nodes contained in the closure ﬁé of the various line

elements are given by

Ny(e) = N, if e =1 & N, = 1, (8.10)
Nyf{e) = nm if e =1 & Ng > 1, (8.11)
N (e) = 1+ne—n _1 if l<e<Ng & Ng > 1, (8.12)
Ny (e) = 1+N -n,_, if e = Ny & Ng > 1. (8.13)

The particular nodes xn(e) which are contained in ﬁé are given by

x (e) = x, if 1<n<Ny(e) & e =1, (8.14)
n ns
Xp(e) = x“'1+mem1 if 1<n<N_(e) & 2<e<N,. (8.15)

In this manner, the last node of one element is the same as the first node of the
next element, as is indicated in Figure 4.

The nodal values of deflections within each element are given in similar fashion.

h (e) =h if 1<m<N, & l<n<N (e) & e = 1, (8.16)
mn mn — —h — — X

h (e) = hm'“'l+ne—1 if 1<m<N & 1<n<N_(e) & 2<e<N_. (8.17)
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The interpolation functions which will be employed to represent displacements

are airfoil polynomial splines

Ny (e)
e .
h(x) = 221 H () v, (x), 1<meNy, l<ec<n,. (8.18)

At each element nodal point xn(e)eﬁg, we require that the value of each inter-
polation function equal the value of displacement prescribed by input data. Thus,
N (e)

h (e) = YE(Xn(e))Hmz(e)' lfpiNx(e), lfijh, ljgjye. (8.19)

mn

I o~1

2=1

Since the airfoil polynomials are unisolvent [5,P.42] each coefficient matrix
vy (x (€)1, 1<4,n<N (e}, 1l<e<N

possesses an inverse, and since the nodal values,
hmn(e)’ 1<m<N, , lfprx(e), 1<e<N .

are given by (8.16) and (8.17), the coefficients

H (e), l<m<N , 1<A<N (e), L<e<N

are computable quantities.
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8.3 Use of jump functions

Consider the displacement interpolation functions for two adjacent elements:
e Ny (e) . _
h (x) = Qzl Ho(e) ¥, (x) if x € Q,

Ny (e+1)
e+l ® A
h = ) +1) i .
' (x) Z ﬁnz(e )yﬂ(x) if x ¢ Qe+1
2=1
The expressions above are not yet in a form suitable for the solution process of
TWODI because they are not uniform over the entire chord. This can be accomplished
by utilizing jump functions and leads to infinite Fourier series whenever a discon-

tinuity exists in a derivative.

A representation for hm which is uniformly valid over both line elements

X € int(Q u Qe+l)

is given by

Nx(e) N, (e,e+l) N, (e) Hmk(e+l)—Hm2(e) ) "
Y (x_ Y<x-x_ >,
LoH ey 0 + ] ) k1 2 n n_
n=1 k=1 2=k+1
where
N (e,e+l) = max{N (e), N (e+l)}-1. (8.20)
X x x

The function above equals hﬁ(x).and all its derivatives whenever x ¢ Qe and

e+l . : . .
equals hm (x) and all its derivatives whenever x € Qe+1- At the hinge x = xq _,
the function is continuous in accordance with the sealed gap condition, and will

. : . . . . . €
possess jumps in derivatives exactly equal to jumps in the derivatives from h“ to
e+l
h .
m
Fourier series expansions have been computed for the jump functions
=]
k
<x—a>k = Z <<x-a> ,y > vy _ (x) (8.21)
n=1 ny n

as -liscussed above in section 5. In order to utilize these expansions, we extend

the uniformization above to all chord elements by starting with the leading edge
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element and adding jump contributions from all hinges downstream.

see that the result is

NX(l) ~
h (x) = ) H_ (1) v (x)
m mn n
n=1
Ne N (e,e+1) N (e) f ,(e+l)-H . (e)
x\€r® %o Hml € _Hml e (k)
+ Z T Y (xm ) <x-x
e=1 k=1 L=k+1 : e

It is easy to

(8.22)

Equation (8.22) is uniformly valid for all points x ¢ Q between the leading and

trailing edges.

The derivatives Y;k) (xne) at the hinges may be computed with the aid of equation
(5.40) according to
. 2-1
Yy = z Dln Yn, ' (8.231)
ni=1 1 1
-1 -2 ¥ y
Y = 7 J D D), Yno (8.235)
. n;=1 p,=1 fny Mymp 2
=1 2-2 2=k ¥ ¥ ¥
x) = } ro-.. D, D ... D Y
'YZ n.=1 n_=1 n =1 »in nln2 nk_lnk nk ., k_>_3. (8.233)
1 2 k
Upon combining (8.21)-(8.23), there results
@« -~
h (x) = ) H_ vy (% (8.24)
n mn o n
n=1
where Hmn is as introduced in (7.33) and is given by
N ~ o
§ N (e,etl) Ny(e) H  (e+l)-H (e}
A _p X mf ml (k) << Sk S (8.25)
Hmn—Hmn(l)+ Z Y Yy (xn ) X »Y Y

e=1 k=1 2=k+1 € e
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§9.. Instructions for the use of TWODI

This section describes the preparation of input data for use of the current
TWODI program (TWODI-III). It is assumed that the user knows the physical meaning
of all terms used in this report and the procedures for accessing TWObI at his
computer facility. BAlso, we reiterate that the solution is based upon the mathe-
matical assumptions of inviscid subsonic linearized potential flow about a thin

airfoil located midway between two parallel wind tunnel walls.

9.1 Summary of capabilities

TWODI will operate in either TIMESHARE (remote interactive terminals) or BATCH
(noninteractive card jobs). Input and output are fully compatible between TIMESHARE
and BATCH. In addition TWODI is coded in ANSI FORTRAN to achieve maximum machine
independence.

TWODI will predict unsteady airloads consisting of any combination of the fol-
lowing output gquantities:

(1) Fourier coefficients of pressure,

(2) Values of pressure,

(3) Section coefficients and center of pressure, and

(4) Rerodynamic work matrix.

The primary parameters determining the standard solution output are:

(1) Mach number,

(2) Reduced frequency,

(3) Height to chord ratio,

(4) Wall ventilation coefficient, and

(5) Airfoil profiles (i.e., displacement mode shapes).

The solution process in TWODI handles one case at a time, defined by a single com-
bination of Mach number, reduced frequency, height to chord ratio and ventilation
coefficient. Since the downwash corresponding to any given mode shape can be factor-
ed out of the solution equations, multiple downwashes are handled simultaneously
within a given case.

Multiple cases may be handled under a single problem which consists of all

combinations of various numbers of Mach number, reduced fregquency, height to

g
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chord ratio and ventilation coefficient. Within a given problem, selection of
output quantities remains fixed.

Provision is also made to enter several different problems. This may be
done by altering a previously defined problem or by entering a completely new
problem. All data, including the selection of output gquantities, may be changed
from one problem to another, with the exception that all problems in a given run
must be done in TIMESHARE only, or in BATCH only.

It is possible to solve the same problem using more than one method. This
provision is preparatory to allowing TWODI to select automatically the optimum
method of solution and thus to handle its own accuracy control at some time in
the future. In addition certain special purpose and checkout calculations are
available.

All input data are automatically checked for correctness. If the run is a
BATCH job, unacceptable data are selectively deleted with an explanatory comment
and execution continues to the extent that it can. If the run is an interactive

TIMESHARE job the user will be prompted to correct unacceptable data.
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9.2 1Interactive input format for TIMESHARE

Queries and messages by TWODI are denoted with Q, responses by the user are
denoted with A. Consecutive data entries must be separated by a comma or by one or
more blanks. All data are assigned initial wvalues by TWODI using subroutine INITLZ.
These initial wvalues are indicated within brackets [ ] below and are precisely de-
fined in the glossary in section 9.4. After one or more problems have been entered,
the most recently defined values are those of the most recently entered problem. In
general, for default to the most recently defined values, type D fol}owed by an im-~

mediate carriage return.

Data module 0. Introduction
Q: This is TWODI-III
FOR DEFAULT TO INITIAL OR MOST RECENTLY DEFINED VALUES
TYPE D FOLLOWED BY CARRIAGE RETURN IF IN TIMESHARE AND ENTER
AN OTHERWISE BLANK CARD WITH A D IN COLUMN 1 IF IN BATCH.
IF IN TIMESHARE TYPE HALT TO STOP.

Data module I. Run parameters

Q: ARE YOU IN TIMESHARE OR BATCH?

A: TIMESHARE [TIMESHARE]

Q: ENTER NUMBER OF LINES PER PAGE

A: Type integer number of lines per page or D followed by carriage

return for default. [66]

Data module II. Output parameters

Q: ENTER TITLE

A: Type descriptive alphanumeric title of 1 to 72 characters or D followed
by carriage return for default. [SAMPLE PROBLEM]

Q: ENTER DESIRED OUTPUT COMBINATION OF FOURIER, SECTION AND WORK

A: Type desired combination or D followed by carriage return for
default. [FOURIER, SECTION]

Q: ENTER LIST OF PRESSURE POINTS

A. Use standard list format (refer to glossary in section 9.4). Type O if

none or D followed by carriage return for default. [10/~.8,1]
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Data module III. Flow parameters

Q: ENTER LIST OF MACH NUMBERS

A: Use standard list format or type D followed by carriage return for
default. [1,0}]

Q: ENTER LIST OF FREQUENCIES

A: Use standard list format or type D followed by carriage return for
default. [2,0,1]

Q: ENTER LIST OF HEIGHT TO CHORD RATIOS

A: Use standard list format or type D followed by carriage return for
default. [1, INFINITY]

Q: ENTER LIST OF MASS EFFECT VENTILATION COEFFICIENTS

A: Use standard list format or type D followed by carriage return for
default. [1, INFINITY]

Q: ENTER LIST OF VISCOUS EFFECT VENTILATION COEFFICIENTS

A: Use standard list format or type D followed by carriage return for

default. f1,0]

Data module IV. Modal parameters

Q: ENTER LIST OF NODES

A: Use standard list format or type D followed by carriage return for
default. [3/-1,1)

Q: ENTER NUMBER OF MODE SHAPES

A: Type integer number of mode shapes or D followed by carriage return for
default. [3]

A: ENTER MODE SHAPE 1

A: Type values of mode shape 1 at modal collcoation points or D followed
by carriage return for default. [l//?} l//? , l//;]

Repeat the last Q&A for the remaining mode shapes. [-1/V7, l/v/;, 3//17] , [l/v/'lT, -l/ﬂr—, 5//1?]

Q: ENTER LIST OF NODE NUMBERS OF HINGES

A: Use standard list format if downwash discontinuities are present.

Type O if there are none or D followed by carriage return for default. [0]

Data module V. Method parameters
Q: ENTER NUMBER OF METHODS OF SOLUTION
A: Type integer number of methods of solution or type D followed by carriage

return for default. [1]
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Q: ENTER SOLUTION PARAMETERS FOR METHOD 1

A: Type the parameters for the first method of solution or type
D followed by carriage return for default. Refer to the glossary for
precise definitions. [3,5,0,0,0]

Repeat the last Q&A for the remaining methods of solution.

Data module IV. Data editing

Q: DO YOU WANT THE INPUT DATA LISTED?

A: Type YES or NO.

Q: DO YOU WANT TO MAKE CHANGES?

A: Type YES or NO.

Note: An answer of YES will result in the following sequence:

Q: DO YOU WANT TO LINE EDIT?

A: Type YES or NO.

Note: An answer of NO will result in data modules II-VI being repeated.
For each data item which does not need to be corrected, simply
type D followed by carriage return. An answer of YES will result
in the following sequence:

Q: NOW OPEN FOR LINE EDITING. WHEN DONE TYPE END.

A: Enter keyword for data item you wish to change and you will
be prompted for the relevant input. The keywords are as
follows:

TITLE

OUTPUT

PRESSURE

MACH

FREQUENCY

HEIGHT

MASS

VISCOUS

NODE

MODE

HINGE

METHOD

END
The first three letters of any keyword are sufficient. This
piocess may be repeated as often as desired. To terminate

editing enter the keyword END.



Data module VII. Multiple problems

Q: DO YOU WANT TO ENTER ANOTHER PROBLEM?

A: Type YES or NO.

Note:

an answer of NO will result in the current list of problems being run.

An answer of YES will result in the query
Q: IF YOU WANT TO MODIFY AN OLD PROBLEM, ENTER ITS NUMBER

OTHERWISE TYPE D FOLLOWED BY CARRIAGE RETURN
A: Type N to alter problem N. Type D followed by carriage return to

begin a completely new problem.

Once the last Q is answered with NO the list of problems will be run. Upon

completion, prompting will continue as follows.

Q: DO YOU WANT TO ENTER ANOTHER PROBLEM?

A: Type YES or NO

Note:

An answer of NO will stop the program. An answer of YES will result

in the query

Q: IF YOU WANT TO RETAIN OR MODIFY PROBLEMS FROM THE OLD PROBLEM LIST
ENTER PROBLEM N OF THE OLD LIST AS PROBLEM M OF THE NEW LIST WHERE
M IS LESS THAN OR EQUAL TO N. OTHERWISE PROBLEM N WILL BE DESTROYED.
TO MODIFY AN OLD PROBLEM, ENTER ITS NUMBER
OTHERWISE TYPE D FOLLOWED BY CARRIAGE RETURN

A: Type N to alter or retain problem N as problem 1 of the new problem
list. Type D followed by carriage return to begin a completely new

problem list. Up to three problems may be defined.

The APPENDIX presents a sample interactive input/output.
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9.3 Card input format for BATCH

Data are read in free format. Entries on a given card may be arbitrarily
spaced so long as correct order is maintained. Consecutive entries on a card
must be separated by a comma or one or more blanks. Otherwise blank cards with

D in column 1 imply default to the most recently assigned values.

Data module I. Run parameters
Card 1: BATCH
Card 2: Number of lines per page or otherwise blank card with D in

column 1 for default value of 66.

Data module II. Output parameters

Card l: Descriptive alphanumeric title in columns 1-72.

Card 2: Desired combination of the words FOURIER, SECTION and WORK
separated by commas or blanks. Use an otherwise blank card
with D in column 1 for default.

Card(s) 3: Pressure points in standard list format (see glossary in
section 9.4). Enter 0 if no pressure values are desired. Use

an otherwise blank card with D in column 1 for default.

Data module III. Flow parameters

Card(s) 1: Mach numbers in standard list format. Use otherwise blank
card with D in column 1 for default.

Card(s) 2: Reduced frequencies in standard list format. Use otherwise
blank card with D in column 1 for default.

Card(s) 3: Height to chord ratios in standard list format. Use otherwise
blank card with D in column 1 for default.

Card(s) 4: Mass effect ventilation coefficients in standard list format.
Use otherwise blank card with D in column 1 for default.

Card(s) 5: Viscous effect ventilation coefficients in standard list format.

Use otherwise blank card with D in column 1 for default.

Data module IV. Modal parameters
Card(s) 1: Nodes in standard list format. Use otherwise blank card
with D in column 1 for default.
Card(s) 2: Number of modes, or otherwise blank card with D in column 1 for

default.
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Card(s) 3: Values of mode shape 1 at nodes, or otherwise blank card with
D in column 1 for default.

Repeat this card(s) for the remaining mode shapes.

Card(s) 4: Node numbers of hinges if such discontinuities are present.
Enter 0 if none are present, or use an otherwise blank card with

D in column 1 for default.

Data module V. Method parameters

Card 1: Number of different methods of solution, or otherwise blank
card with D in column 1 for default.

Card 2: Solution parameters for first method of solution, or otherwise
blank card with D in column 1 for default. See glossary for precise
definitions of names and parameters.

Repeat Card 2 for the remaining methods of solution.

Data module VI. Data editing
Data editing is not currently permitted with BATCH input.

Data module VII. Multiple problems
Card 1: YES or NO beginning in column 1. If YES then repeat data modules

II-VII. If NO processing will terminate.
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9.4 Glossary of input terminology

This subsection provides in alphabetical order definitions of input barameters
needed to run TWODI. All data are automatically tested upon input and unacceptable
values are deleted with an explanatory message.

BATCH. Indicates noninteractive jobs with punched card input.
FOURIER. Entering the word FOURIER causes the pressure Fourier coefficients to be
printed upon output. Initial default condition is affirmative.
LIST FORMAT. There are two standard formats for entering lists of numbers, one
for arbitrarily spaced data and another for equally spaced real data. To enter N
arbitrarily spaced real or integer data with values V1,...,VN, type

N, V1,..-,VN
Such an arbitrarily spaced list may contain one (and at most one) infinite value
by entering INFINITY. To enter N egually spaced real numbers from pa to B, type

N/ A, B

To enter an empty list, type 0.
LIST OF FREQUENCeES. From 1 to 10 finite real numbers representing reduced fre-
quency based on semichord. May not be an empty list. Initial default condition
is two frequencies with values 0 and 1.
LIST OF HEIGHT TO CHORD RATIOS. From 1 to 5 positive numbers representing height
to chord ratio. May not be an empty list. To specify free air conditions, type
INFINITY. Initial default condition is one value of INFINITY.
LIST OF MACH NUMBERS. From 1 to 10 values of subsonic Mach number, each of which
must be non-negative and less than one. May not be an empty list. 1Initial default
condition is one Mach number with value O.
LIST OF NODES. From 1 to 20 distinct points at which mode shapes are to be collo-
cated. May not be an empty list. 1Initial default condition is 3 nodes with values
-1, 0 and 1.
LIST OF NODE NUMBERS OF HINGES. From 0 to 3 integers locating possible flap hinges
at the corresponding nodes. May be an empty list. Initial default condition is
that there are no hinges.
LIST OF PRESSURE POINTS. From 0 to 100 points along the chord where pressures are
to be printed upon output. Each value must be greater than -1 (i.e., aft of lead-
ing edge) and less than or equal to +1l(i.e., not aft of trailing edge). Should
not coincide with any hinge locations; if so, such pressure points will be deleted
and the number of pressure points reduced accordingly. May be an empty list. Ini-

tail default condition is 10 points equally spaced from -.8 to 1.
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LIST OF MASS EFFECT VENTILATION COEFFICIENTS. From 1 to 5 values of mass effect
(slotted wall) ventilation coefficients. Enter INFINITY for closed walls. For
open jet enter 0 for both mass effect and viscous effect (see below) ventilation

coefficients. Initial default condition is one value of INFINITY.

LIST OF VISCOUS EFFECT VENTILATION COEFFICIENTS. From 1 to 5 values of viscous
effect (porous wall) ventilation coefficients. Enter INFINITY for closed walls.
For open jet enter 0 for both mass effect (above) and viscous effect ventilation

coefficients. 1Initial default condition is one value of O.

NUMBER OF LINES PER PAGE. Indicates number of lines per page of printed output.
Not presently utilized. Initial default value is 66 in both BATCH and TIMESHARE.

NUMBER OF METHODS OF SOLUTION. Integer from 1 to 10 which controls the number of
different methods by which each case is solved. Presently used for convergence

and extrapolation control. Initial default value is 1.

NUMBER OF MODE SHARES. Integer from 1 to 5 which controls the number of different

mode shapes for which airloads are calculated. Initial default value is 3.

SECTION. Entering the word SECTION causes section coefficients Cp and Cy for 1lift
and moment and chordwise center of pressure Xqp to be printed upon output. Initial

default condition is affirmative.

SOLUTION PARAMETERS.* Three integers Il, I2 and I3 followed by two real numbers

Rl and R2. Used to control the method of solution and to perform special purpose
and check calculations. Will be phased out in the future and replaced by automatic
accuracy control. The five-tuple (Il1, I2, I3, Rl, R2) produces the following (a

dot - indicates parameters not presently used, so enter 0):

(1,2,1,+,°) Checks the Legendre-Gaussian guadrature tables.
(1,2,2,+,°) Checks the logarithmic-Gaussian quadrature tables.
(1,2,3,°,°) Checks the inverse square root Gaussian quadrature tables.
(1,2,4,-,*) Checks the Laguerre-Gaussian quadrature tables.
(1,3,°,°,°) Checks the eigensolution of (3.11y).

(1,4,°,+,°) Checks the infinite series summation (3.117).

(1L,5,*,+,°) Checks the calculation of K¢ in (3.10).

(1,6,*,°,°) Checks the calculation of F; in (12.26).

(1,7,°,°,°) Checks the calculation of Fy in (12.33).

*Note added in proof. Since the writing of this report, TWODI has been modified
for automatic extrapolation as described in section 11 and the Possio free air
kernel is computed as described in section 12. This Glossary, the Addendum

immediately following the Conclusions in section 15 and the Appendix reflect these
changes.
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(1,9,°,°,*) Checks the calculation of airfoil polynomials in (5.5).

(1,10,+,°,"*) Checks the calculation of the collocation matrix (6.8).
(2,1,+,R1,R2) Special purpose. Calculates the Kiissner-Schwarz solution for

flaps with hinge at Rl and reduced frequency R2. -1<Rl<l.

(2,2,°,°,*) Special purpose. Quadrature evaluation of Possio kernel.
(2,4,+,+,°) Special purpose. Quadrature of x log x using Legendre-Gaussian
quadrature.

(3,12,13,R1,*) Standard solution. Richardson extrapolation of order I3
based on Bland's collocation method with a period of I2
basis elements using internal error tolerances of Rl. If
R1=0, Rl is set to 107%. Final solution error is approxi-
mately 10R1. Reduces to Bland's collocation method with I2
basis elements when I3=0. 1<I1<24. This is the only combi-
nation of solution parameters needed to compute airloads.

Use of solution parameters with Il # 3 requires expert interpretation and is not
recommended for production usage. Initial default value of solution parameters

is (3,5,0,0,0).

TIMESHARE. Indicates remote terminal jobs in which TWODI and the user communicate

interactively. Initial default value is affirmative.

WORK. Entering the word WORK causes the aerodynamic work matrix [Appn] to be
printed upon output. Not presently implemented. Initial default condition is

negative.
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§10. Convergence characteristics of TWODI

In our previous report [5] an extensive examination of the convergence

of Bland's collocation method was made; both analytically and computationally.
Our principal theoretical result was that collocation and Galerkin's method were
numerically equivalent, so that convergence was analyzed in terms of Galerkin's
method. On the assumption that the quadrature errors in the evaluation of the
Galerkin matrix could be neglected, it was concluded that Bland's method was con-
vergent. This theoretical result was validated by exhibiting the rapid numerical
convergence of TWODI-I for a variety of steady and unsteady flow problems with

smooth downwashes.

In the present section these results are extended in several directions.
First our convergence result is strengthened by showing that one need not make
the assumption of negligibility of quadrature errors in the Galerkin matrix and
we present a direct proof of the convergence of collocation. This enables us to
obtain improved error estimates along with strenthening the theoretical basis of
collocation methods in aerodynamic calculations. Second, the numerical conver-
gence of TWODI is demonstrated for problems with flaps. An important result in
this case is the verification of the predicted slow rate of convergence, in contrast
to the rapid rate achieved for smooth downwashes. This observation required us to
make a detailed study of a number of convergence accelerating techniques; a topic

which is taken up in detail in the following section.

10.1 L2 convercence of collocation.

Since we wish our analysis to cover other equations than those with Bland's
kernel we begin by making several assumptions concerning the kernel K (x) =K (x) -1/x.
These are:

(A-1) R(x—g) is Lebesgue-Stieltjes square integrable with respect to the product

measure ‘1-¢ Jl4x ;i.e.,
v/l+£ v/'l—x
V(1 - /1+x, 3 2
J J </ T5e /ﬁ) |R(x-£) |2 agax<e. (10.1)

=1 -1
(A-2) i(x—g) is mean square continuous; i.e.,

1 4= . -
lim J »/lTé_ |K(x—€+h)-K(x-g) ’2 dg = 0. (10.2)
h»ro -,
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For the next assumption we need the following definition.

Definition. Let feL% and let QN(f) denote the sum given by the quadrature

rule (5.301). We say that f is guadrature convergent for {QN} if QN(f) is

defined, N>1, and if

lim Qn(£)
N>

1 1+x
J /I:; f(x)dx.

. 2 . 2
(A-3) For each fixed E,IKEGQI ]K(x—g)l is quadrature convergent.

since for Bland's kernel i(x) = KL(x) + Kc(x) where Kc(x) is continuous

it follows by standard theorems [44],[48] that Kc(x) satisfies (A-1)-(A-3). For

KL(x)lsimilar properties may be shown by direct, though lengthy computation

[49]. The proof, particularly of (A-3), relies on the fact that QN(f) may be

viewed as a Riemann gsum [49],{50] and that appropriately chosen Riemann sums con-—

verge to the integral of (log!x])z.

Our next step is to recast the collocation method in a suitable abstract

form.
N

Definition. Let feLg and let {xk}1 be the zeros of ay,;. Then
N

Ly(€) = 1 2 (x)E(x),
X=1 k k

(10.3)

N
is the unique polynomial which interpolates to f(x) at {xk}l. Here {Qk(x)}T

are the fundamental polynomials of Lagrange interpolation.

Using (10.3) the sequence of operators {KN} is defined by
K W) = Ly(xp), yeLZ.

Let

2z

g () = ) ay (&)
N k=1 k'k

(10.4)

. . . N
be the collocation approximation to ¥ using theN basis elements {Yk}l. Then

a little algebra shows that ¢N satisfies the equation
+ K = = w
HwN NwN L _(w)

N N°

lpor technical reasons we shall consider 1og[x—£| = Q0 if x = §.

(10.5)
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(Note that (10.5) is analogous to the eguation satisfied by wg , where wg
is the corresponding Galerkin approximation to Y.) The convergence of wN to
Y is based on the following lemmas.

Lemma 10.1 Assume that {Ky} are bounded and that

lim || x-k || = o. (10.6)
N> N

-1
Then there exists an No such thatforallN>No,(H+KN) exists, is bounded and
the norms ™ = ”(H+KN)'1” are uniformly bounded. From this it follows that
for all N>NO, wN exists and

| w-v < TNIIH¢—LN(H¢)l[a. (10.7)

Gl <
Proof. The existence and boundedness of (H+KN)_1 follow along standard lines
[51}. To obtain (10.7) observe that

-1 -
R =1p—(H+KN) w, = (HK ) 1[(H+KN)¢—WN]

~1-
(H+KN) [Hw+LN(Kw)—LN(w)]

(H+KN)'1[H¢-LN(Hw)]. (10.8)

Taking norms on both sides of (10.8) gives (10.7) [
Lemma 10.2. Let fELi and assume that |f|2 is guadrature convergent for {QN}.
Then
Lim || £-z_(6) ]| = = o. (10.9)
Niroo N ¢
Proof. 1In [44] it was shown that the lemma holds when f is assumed to Riemann
Stieltjes square integrable, in particular when f is continuous. However, a
careful examination of the proof presented there shows it is sufficient to re-
quire that |f|2 be quadrature convergent[]
Using Lemmas 10.1 and 10.2 it follows that wN+w provided thatf[K—KN|[+ 0,
K satisfies (A-1) - (A-3) and |w|? is quadrature convergent for {QN}.
To see this, observe thatit follows from the above discussibn that lelz is
quadrature convergent since HY = Ky - W and Ilez is quadrature convergent (in
fact continuous from (A-2)) and ]wl2 is quadrature convergent by assumption.
Thus by Lemma 10.2 .

2
1im || Hw—LN(Hw)lh = 0, (10.10)
N->o0
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and so (10.7) shows that ¢N+w in the norm of Li. Using this we arrive at
our main convergence theorem.

Theorem 10.1. Let i(x-&) satisfy (a-1)-(A-3). Assume that w is quadra-

ture convergent, then

1lim U = 0.
Lin || b,

Proof. From the preceeding discussion it suffices to show that {KN} are
bounded and that
1im || k-k_|| = o.
N KN
The boundedness of KN is established first.
From (10.3) it is seen that .
Kg¥) (%) = F 2, () (K9 (x) .
k=1
From Eq. 14.2.4 in [44 ] we get that ?
1 2 N 2
L (6)] ag(x) = § A |fx)] ,
N k k
1 k=1
ﬂ(l+xk)
where {Xk = —————T—4 are the weights in the quadrature rule Q. Thus
k+5
1
2 ) 2 N 2
llxgvll, = L (ko) | ag(x) = J A |kpix)]|”.
o N k k
=1 k=1
But
2 il 2
ko) | = | IR -2 0010 |
4
1 ~ 2 ! 2
< |xx-e ] dqa@n) (| JwE | @),
=1 =1
so that
2 N 2
el <2 Ao llvll .
N" "o *=1 k'k v

|

4t and 4g(x) = '/'i_i}’: ax.

|
;‘\H
+11
s d aad

21n what follows we use dc(E) =
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where

1

. 2
By = J lK(xk-E)I da(£).
-1

This gives

gl < cll vl

since Bk < o, and so KN is bounded.
To prove the uniform convergence of KN to K observe that

1

(Kw—KNw) = J HN(X,E)w(E)da(E),
-1

where
-~ N -~
H (x,€) = K(x-&) - ) 8, (X)K(x, ~E).
k=1
Thus
2 1 ! 2
IIK—KN||§_J J |1 (x,8) | dB(x)da(e).
-1 -1

Let 1 (x) = K(x-£). Then

I-IN(X,E) = ug(x) - LN(u D (x).

3

From Lemma 10.2 it follows that
1 1 2
i 2 = i - =
lim J IHN(X.E)| dB (x) §i$ J IuE LN(UE)| dp(x) = 0
=1 -1
for each fixed £&.
From the preoof of Lemma 10.2 found in [44] we get
1 1

2 - 2
lim sup(J [u,~L (1) ] aB(x))< 4[ |R(x~£) | aB(x).
N ] E N E U

Since

1 .1

- 2
J J IK(x-£) | ag(x)daf(g) < «
-1 -1

e

(10.11)
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it follows from (10.11) that there exists a function p(£) such that

1 2
J.IHN(x.a)l ag(x) <p (&),
~1

and

1 2
J lp(E)] aa(g) < o,
=1

so that by the dominated convergence theorem

1 i
2

lim J J B (x,8) | dB(x)da(g)
N> N

-1 =1

1 1 2
= J [lim (J |E_(x,£)| dB(x))1da(g) = oO.
N N
-1 -1
Thus
' 2 ‘ 11 2
%igllK—KN|l < lim J IHN<x,g)| dAB(x)da(g) = 0

-1-1

and the theorem is proved

We now make several observations concerning the convergence theorem. First
we note that it has been shown that wN converges to Y in mean square and not
pointwise, although numerically pointwise convergence is indicated [ 5]. How-
ever it is easily shown that the generalized Fourier coefficients {an] converge
to the true Fourier coefficients of Y. 1In addition integrated aerodynamic forces
such as 1lift and pitching mement also converge to their true values. This was
established in [ 5] and follows easily using the fact that such quantities are
represented in terms of inner products of the pressure factor y and an appro-

priate function in LY.
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Second we observe that the rate of convergence is proportional to
” Hw—LN(Hw)”a . If the downwash is smooth, then in general Hy will be smooth
and we expect LN(Hw) to converge rapidly to Hy. This was observed in [ 5].
However if w is not smooth then Hy will be poorly behaved and thus slow con-
vergence of LN(Hw) to HY is anticipated. In fact for the particular case of
steady flow in free air, k=0 so that

| w~w < w-L_ (w) [ a. (10.12)

Gl
Although we have not obtained exact estimates of]lw—LN(w)Ih! we expect that
asymptotically it should behave no worse than 0(1//N). The slowest conver-
gence rate should occur for a downwash w(x) corresponding to a simple leading
or trailing edge flap. Numerical results presented in Tables 3-4 indicate a

somewhat better rate of 0(1/N). For k7o the same rate is expected since

vl < ol m-mg G Il < rt [l weryg oo |, +l kv-r e ] 3

and by (A-1) Ky is continuous. Thus the dominant error term is TN”w-LN(w)H.
Again the results exhibited in Tables 5-6 indicate an 0(1/N) rate of convergence.
In general for 24 basis elements, 1%-2% error might be anticipated using

TWODI for flaps. This would be an unacceptably large error for high precision
engineering work. Substantial increase in accuracy thus appears to require one
of two strategies; an increase in the number of basis elements and/or the
utilization of alternate solution methods.

Since present engineering technology allows pressure measurements to be
made within an error of 0(10_3) this is the maximum error that we would like to
have. From Table 3 we see that an error of O(10_3) for amidchord flap would re-
quire several hundred basis elements. Such an increase in the number of basis
elements is out of the question. The second option is pursued in the following
section where it is shown that an error of 0(10'4) can be achieved for a mid-
chord flap using 16 basis elements, and an error of 0(10_3) is obtained for a

three-quarter chord flap using 12 basis elements.
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Table 3. Principal error term in norm for a midchord flap (M=0,k=0,n=x)

NP ”wNPl,Y % error ]% errorlxNP
1 1.77245 -10.545 10.5
2 1.50774 +5.964 11.2
3 1.67441 ~-4.430 13.3
4 1.54963 +3.352 13.4
5 1.64833 -2.843 14.2
6 1.56602 +2.330 14.0
7 1.63626 -2.051 14.4
8 1.57475 +1.785 14.3
o 1.62929 -1.617 14.5

10 1.58017 +1.447 14.5

11 1.62477 -1.335 14.7

12 1.58386 +1.217 i4.6

13 1.62159 -1.136 14.8

14 1.58654 +1.049 14.7

15 1.61923 -0.989 14.8

16 1.58857 +0.923 14.8

17 1.61471 -0.876 14.9

18 1.59817 +0.823 14.8

19 1.61597 -0.786 14.9

20 1.59145 +0.743 14.9

| ’E—+ 1
|l Jexact = 7 2 = 1.60337

Table 4. Principal error term in lift for a midchord flap (M=0,k=0,n=x

NP Cy, % error % errorlxNP
1 6.28319 +22.203 22.2
2 4.54656 -11.573 23.1
3 5.60728 +9.057 27.2
4 4.80272 -6.591 26.4
5 5.43401 +5.687 28.4
6 4.90481 -4.605 27.6
7 5.35469 +4.145 29.2
8 4.95964 -3.539 28.3
9 5.30922 +3.260 29.3

10 4.99386 -2.873 28.7

11 5.27974 +2.687 29.6

12 5.01725 -2.418 29.0

13 5.25908 +2.285 29.1

14 5.03424 -2.088 29.8

15 5.24379 +1.988 29.4

16 5.04715 -1.837 29.4

17 5.23202 +1.759 29.9

18 5.05729 -1.640 29.5

19 5.22269 +1.577 30.0

20 5.06546 -1.481 29.6

= 2+
CLexact T
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Table 5. Cr, for an oscillating flap hinged at the 50% chord (M=0, k=.1l,7n=«)

6 _—
source real imag magn phase % error (magn)
NP=1 5.24189 -0.50914 5.26656 -5.55 +20.9665
NP=2 3.83875 -0.39049 3.85856 -5.81 -11.3735
NP=3 4.71938 -0.46530 4.74226 -5.63 + 8.9240
NP=4 4.05062 -0.40762 4.07108 -5.75 - 6.4922
NP=5 4.57548 -0.45292 4.59785 -5.65 + 5.6071
NP=6 4.13538 -0.41479 4.15613 -5.73 - 4.5387
NP=7 4.50954 -0.44719 4.53166 ~-5.66 + 4.0868
NP=8 4.18095 ~-0.41868 4.20186 =-5.72 - 3.4883
NP=9 4.47172 -0.44390 4.49370 -5.67 + 3.2149
NP=10 4.20940 -0.42113 4.23041 ~-5.71 - 2.8326
NP=11 4.44720 -0.44177 4.46909 -5.67 + 2.6496
NP=12 4.22884 -0.42281 4.24993 -5.71 - 2.3842
NP=13 4.43001 -0.44027 4.45184 -5.68 + 2.2534
NP=14 4.24298 -0.42403 4.26411 -5.71 - 2.0585
NP=15 4.41730 -0.43916 4.43907 -5.68 + 1.9601
NP=16 4.25371 -0.42495 4.27489 -5.71 - 1.810¢9
NP=17 4.40751 -0.43831 4.42925 ~-5.68 + 1.7345
NP=18 4.26214 -0.42568 4.28335 =-5.70 - 1.6166
NP=19 4.39974 -0.43764 4.42145 -5.68 + 1.5554
NP=20 4.268%94 -0.42627 4.29017 -5.70 - 1.4600

Table 6. CLG for an oscillating flap hinged at the 75% chord (M=0,k=.1,n=wx)

source real imag magn phase % error {magn)
NP=1 5.20343 -0.76932 5.25999 -8.41 +62.2622
NP=2 3.80393 -0.57961 3.84783 -8.66 +18.6994
NP=3 2.86126 ~0.44037 2.89495 -8.75 -10.6954
NP=4 4.01530 -0.60740 4.06098 -8.60 +25.2747
NP=5 3.45638 -0.52720 3.49635 -8.67 + 7.8568
NP=6 3.01247 -0.46186 3.04767 -8.72 - 5.9843
NP=7 3.70555 -0.56291 3.74806 -8.64 +15.6216
NP=8 3.36402 -0.51342 3.40298 ~8.68 + 4.9765
NP=9 3.07119 -0.47035 3.10700 -8.71 - 4.1540
NP=10 3.56680 -0.54280 3.60786 -8.65 +11.2967
NP=11 3.32122 -0.50707 3.35971 -8.68 + 3.6417
NP=12 3.10241 -0.47489 3.13854 -8.70 - 3.1811
NP=13 3.48818 -0.53135 3.52842 -8.66 + 8.8461
NP=14 3.29653 -0.50341 3.33475 -8.68 + 2.8717
NP=15 3.12177 -0.47771 3.15811 -8.70 - 2.5774
NP=16 3.43758 -0.52397 3.47729 -8.67 + 7.2688
NP=17 3.28046 -0.50103 3.31850 -8.68 + 2.3704
NP=18 3.13496 -0.47963 3.17144 -8.70 - 2.1662
NP=19 3.40229 -0.51882 3.44162 -8.67 + 6.1684
NP=20 3.26916 -0.49936 3.30708 -8.68 + 2.0181
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10.2 Stability and integration error.

The error estimate given by (10.7) is a theoretical one based on the assump-
tion that all arithmetic is performed exactly. In general there will be other
sources of error, particularly roundoff and errors in the evaluation of the col-
location matrix. To see the effect of these assume that &N is the computed value

of Yy. Then letting 6¢N=wN-@N it is seen that

Y=y () +8 (10.13)

Taking norms on both sides of (10.13) shows that
=g ll < 1 w-w Il +11 su I, (10.14)

Sincellw—wNHYis estimated in (10.7) we concentrate on evaluating HSwNHY Now wN

is given by

N
b= Llay, (10.15)
n=1
N . . ~ N .
where {an}m=l solve the collocation equations (6.7). Let {an}n=l be the numeri-

cally computed values of {an}§= Then

1°

This gives

GanYn.

I c~—2

N ~
6wn = Z (an_an)Yn=

1 n=1

N
Using the orthonormality of {Yn}n=l we get that

2 1
| H2

) (10.16)

N
ow ll = (1 |sa
Ny =1 n

N
%=l'
of a complex N-vector.

Letting §a = {Gan H6¢N|LY= HGa([z, wherelldalb is the usual Euclidean length

If CN denotes the collocation matrix, then

CN§_= w (10.17)
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and
+AC_ )a =
(CN CN)E v, (10.18)

where a = {a }N a = {a }N

N . :
=1’ 2 nin=1’ %= {W(XK)}K=1 and AC_ is the error in the evalu-

ation of Cyr Standard error estimates show that
-1
llsall, <ol scgll liey ™l (10.19)

where o is independent of N [51]. Consequently the progagation of error is de-

-1 . . .
termined by][CN |L We now turn to the problem of estimating this quantity.
-1y .. . .
Rather than analyze”CN ”dlrectly we introduce a suitable vector norm on

N, N . . .
C (C =-Kzl,22,...,zN)]zi complex, i = 1,2,...,N}) and use the induced matrix

norm instead.

N .
Definition. Let {Ak k=1 be the weights of the quadrature rule QN. Let zemN

and define

2.1/2
) / . (10.20)

N
=18 = 0 ls,

1

Since Ar>0 it is straightforward to verify that” z” 2 is a norm on ¢N. Let

N
T:¢N+¢ be an NxN complex matrix, and let]]T” 2 be the matrix norm of T induced

by ” ” g. Using these definitions we arrive at the following theorem.
Theorem 10.2. Let x be the collocation matrix and let T=SQp II(H+KN)_1||. Let
N . .
a—[an(xK)], where {xk}k=l are the collocation points. Then
-1 -
e, [
Proof. Let a = {a }N and w = {w{x )}N - Then
—_— - n ' n=1 — K k=1
CNE = Ww.
Now
N
by = I ay (x)
n=1
so that N
H =
wN(x) Z anan(x)
n=1
and
N
(HwN)(xK) = Z anan(xK). (10.21)
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From (10.5) it follows that

= -1
wN (H+KN) Wy

so that

: N
-1 2.1/2
ugll, = I ™ il el gl = w0 D Alwond 12922l ) §

Since H is unitary [ 5],”wN|Ly=”HwN” o’ giving
ol <ellu 112

N
Letting H = {wN(xK)}k=l’ (10.21) gives

1
a=a H.

Taking norms we get

112 = o122,
But ”Elg =|IHWN”a giving

a2 < <l Y2 If W]l

From (10.24) it follows that
lleztll Q< ellet ) 20

Using the theorem it is easily shown that

1 —1Q
8 < — ( 1=.
lswlly = oy el
k

(10.22)

(10.24)

Thus the propagation of numerical error in the collocation matrix depends essen-

tially on [|&l]| 2.
1)

lldqllg. However numerical experimentation has shown thatlla

At present we have no theory to predict the growth of

grows slowly
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with N so that for 1<N<20 the collocation matrix is well-conditioned. From
this we conclude that reduction in numerical error for fixed N requires
careful evaluation of the integrals in CN'

In TWODI-I difficulties arose in unsteady problems where we found it
difficult to obtain more than 3-4 decimal accuracy. Since the above analysis
indicates that inverting the collocation matrix is numerically stable, we
conjecture that the source of the difficulty is the improper integration of
the log terms in the kernel. In cection 12 we show that this is in fact the
case. A thousand fold increase in accuracy is obtained by efficient integra-

tion of the singular terms.
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§11. Convergence Acceleration

This section presents a theoretical error analysis of various methods which
might be used for improving the rate of computational convergence when flaps are
present.

As we have shown in section 10 Bland's collocation method converges rapidly
when the downwash is smooth. However, if the airfoil contains flaps, the xresults
presented in Table 3-6 indicate that for physically important w's a convergence
rate no better than o(1l/N) can be expected. This is disappointing, since an en-
gineering accuracy of 0(1073) would appear to require something on the order of
300 basis elements. As TWODI can presently accommodate a maximum of 24 basis
elements it might appear that the flap problem is essentially intractable with
today's computing capability.

This circumstance naturally leads one to look for alternate methods of
solving the genralized airfoil equation when flaps are present: the goal being
to obtain a convergence rate sufficiently great so that the stated degree of
accuracy can be achieved within the limitations of our existing code.

A great many possibilities present themselves. Among the choices are:

(a) Modification of the collocation method by either changing the basis elements,
the collocation points, or both.
(b) Changing the basic method of solution to something like Galerkin's method

[5] or least sguares ([8].

(c) Singularity subtraction. This is commonly referred to as Landahl's method

[52] in three dimensional problems and has been developed by Rowe et al [53],

[54].

(d) Iterative improvement.
(e) The use of reverse flow theorems [55], [56].
(f) The use of extrapolation methods.

Since Bland's collocation method is understood theoretically, and is efficient
for smooth downwashes, it is presently felt that improvements should be sought
utilizing as much of the output of TWODI as possible. For this reason we have
ruled out category (a). In addition, our examination of results achieved by
Milne in [56] indicates that the 0(1/N) rate of convergence of flaps may be in-

herent in any collocation method using a continuous representation of Yy, regard-
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less of the choice of colloation points or basis elements. However, some recent
work by Nissim and Lottati [57] ﬁsing a piecewise continuous representation of
Yy for Possio's equation seems to indicate that considerable improvement may be
achieved over standard methods. Since we have had little time to evaluate this
work, such representations are not considered in this report.

Because of the three way equivalence of Galerkin's method, collocation and
least squares established in [5], use of methods in category (b) is also ruled
out. We are thus left with techniques in (c)-(f).

Although such methods have been discussed in the literature for many years,
we have been unable to find any discussion of their theoretical properties and
little evidence of the controlled numerical experimentation necessary to dis-
tinguish among competing techniques. For this reason we have included a fairly
detailed examination of these procedures which we hope will clarify our reasons
for not finding them effective at the present time. Since the analysis that
follows in sections 11.1to 11.3 is fairly involved, we observe that the reader
may, with little loss in continuity, skip these and proceed to section 11.4. The
principal results reported in sections 11.1 - 11.3 indicate that the techniques
(c)-{(e) yield only amodest increase in the rate of convergence of Bland's colloca-
tion method at the expense of substantially increased arithmetic. These facts
ultimately lead us to examine the use of Richardson extrapolation as a means of
accelerating convergence.

While we have not yet completely automated this technique, it presently can
be used in conjunction with some preliminary data analysis to obtain the stated
goal of errors of order 10™3 or less for a wide variety of flow problems. The
principal drawback to total automation is the oscillatory nature of the conver-
gence when flaps are present. In addition, the period of oscillation appears to
depend on the location of the hinge point, and cannot, at present, be predicted
theoretically. As the analysis that follows shows, there is reason to believe
that a combination of either singularity subtraction and/or iterative improvement

in conjunction with extrapolation may yield the most efficient algorithms.
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11.1 Landahl's method

Because of its widespread use in three dimensional calculations [53], [54] we
begin with an examination of Landahl's method for the solution of (6.1). The aim
is to find an equivalent integral equation with a smoother downwash than w. In
principal there are a variety of implementations of the basic idea, and we discuss
two of these. From a mathematical point of view the method may be seen as a gen-
eralization of the well known Kantorovich regularization method used for solving
integral equations of the second kind [51] and our analysis follows closely that of

Atkinson presented in ([51].

11.1.1 =Landahl I.

We consider solving the integral equation

(H+K) ¢ = w. (11.1)

Let wo be an approximation to y. Using wo we define the residual downwash We by

w_ = w-(H+K)Y , (11.2)
R [}

and the residual pressure wR by

(H+K)¢'R = Wp- (11.3)

T 11.1. = U +P_.
heorem Y Yy wR

Proof. From (11.2) and (11.3) it is seen that
(H+K)(wo+wR) = (H+K)¢vo+(H+K)wR = w—wR+wR = w.

Thus wo+¢R solves (11.1). Using the fact that (11.1) has a unique solution it fol-
lows that § = ¢o+wR 0

From Theorem (11.1) it is seen that y can be determined by solving (11.3) instead
of (11.1). Basically we are considering a generalization of iterative refinement used
for solving linear algebraic equations [51]. For the method to be effective wo must
somehow be determined so that the residual downwash is smoother than w; thus solving
for wR would give a more rapid rate of convergence than obtaining Y directly.

Viewing the technique as iterative refinement we might proceed as follows. Let
wo be obtained using Bland's collocation with the maximal number of basis elements N.

(presently N=20). Thatis, ¢o solves

(H+KN)¢O = vig- (11.4)
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In this case

WR = (H+K)wovw

and letting wi be the approximation to wR using N basis elements gives

N
(H+KN)11)R = LN(WR). (11.5)

We take our approximation to ¥ as

Yy = Vel - (11.6)

Hence, (11.6) gives

=
Il

-1 -1
(H+KN) wN+(H+KN) LN(WR)

-1
(H+KN) [wN+LN(wR)]

it

_l‘_
(H+KN) lLN(w)+LN((H+K)¢O)-W)]

-1
(H+KN) [LN(w)l-

Thus ¢N=wo and no improvement can be expected. From the above result it is seen
that ¢0 must be chosen in some other way than by (11.4).

To do this let H+K be decomposed as

+K = HH+K_+ .
H+K H Kl K2 (11.7)

_.l .
where it is assumed that (H+Kl) exists. Let

._1
= + -
wo (H Kl) w (11.8)
and assuyme that wo can be determined accurately (essentially analytically). Then

in this case

w_ = w-(H+K)¢O = w—(H+K1)¢O—K2w0 = —sz

R o’

Thus the residual pressure ¢R satisfies the equation

(HHR) o = =K, (11.9)

If it is assumed that K2 satisfies (A-2), then wR = —szo is continuous. If it

is possible to effect the kernel splitting K=K1+K2 so that K2 is highly differen-

tiable and (H+K1) has a known inverse, then (11.9) should present a more tractable
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problem to solve than (11.1). To obtain a numerical approximation to ¥ (11.9) is

solved by collocation giving a function wi satisfying

N N
(H+K b = ~Iy (Ky¥,) = wie
Let
-~ - N
Uy = YotV

(11.10)

(11.11)

wN is then taken as our approximation to Y. The following theorem justifies this

procedure.

Theorem 11.2. Let @N be defined by (11.11). Assume that K1

~ 2
so that ” KlN—KH + 0. Then wN converges to ¥ in LY and

~ -1 -1
(IR (PO |5 SO TR IR GRS S NG S Ry 0] g (LW S 2

Proof. We first show that &N satisfies
4K V0. = wH - .
(H KN)wN w (Kleo Klwo)

To see this observe that

~ N
H = H + Hy
wN ¢R ‘lo

N
= - - + +
K2N¢o (KlN K2N)¢R Hlbo

N
-x - + -
Bon¥o™ KontKon) VrH K ¥,

N
= - - - +
Kon¥nKin¥r ~ Kp¥ot

N
= - - - +K - +
K2N¢N KleR Kleo leo Kllpo v

= Kby +(K1N—Kl)¢o+w.

Thus (11.13) follows. To obtain (11.12) write

b = (a+x) "t

and

= -1 -1 _
wN = (H+KN) w+(H+KN) [(KlN K)wol.

satisfies (A-1)-(A-3)

(11.12)

(11.13)

(11.14)
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Subtracting gives

T
<
[}

—Kl)wo]

-1 -1 ~1
(H+K) w—(H+KN) w-(H+KN) KKlN

ft

-1 -1
(H+KN) {(KN-K)(H+K) w—(KlN-K1)¢O}

[

(K ) (K=K (H5+K) - (K, Ky ) () Th)

-1
N—Kl)(H+Kl) }w. (11.15)

-1 -1
(H+KN) {(KN—K)(H+K) -(Kl

Now

K -K = (K._-K )+(K2N—K )

N IN 1 2

so that the inner term in (11.15) becomes

1 -1 -
—K2) (H+K) - (KlN—Kl) (H+Kl)

- 1
(KlN—Kl)(H+K) +(K,

N
1

-1 -1 -
(KlN-Kl){(H+K) -(H+Kl) }+(K2N—Kl)(H+K1)

-1 -1 -1
(KlN—Ki)(H+K1) (Kl—K)(H+K) +(K2N—K2)(H+K)

it

-1 -1 )
{(KlN—K)(H+Kl) (Kl-K2)+(K2N-K2)}(H+K) . (11.16)

Substituting (11.16) into (11.15), using (H+K)_lw = ¢ and taking norms gives (11.12)[]
Equation (11.12) shows explicitly how the convergence rate of ¢N to ¥ depends
on the splitting of K. If K2 can be chosen so that it is very smooth, then on the
basis of (11.12) we would expect rapid convergence of wN to ¥. (This probably justi-
fies its success in three dimensional free air calculations.) At present the only fea-
sible splitting when walls are present seems to be the trivial one, Kl=0, K2=K. In

this case wo is determined by

Hy = W (11.17)

which can generally be obtained analytically via the Sohngen inversion formula [30].
The residual pressure then satisfies
-1
(H+K)Y_ = -KH "w,
R
and &N is obtained from

(H+KN)lbN = W.
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The error estimate 11.12 now simplifies to

- -1
(RS DU S R F 37 S (11.18)

Using (11.18) we can directly compare the rate of convergence of @N to that of
wN. For wN the rate is proportional to IIH¢“LN(H¢)n1While for wN it is propor-
tional to ”Kw-LN(Kw)“a. Since Ky is continuous &N should converge faster than
wN' but for discontinuous downwashes of the type associated with flaps we anti-
cipate a rate no better than 0(1/N2) since Ky will in general not be differenti-
able due to the logarithmic singularity in Kl.
Thus Landahl's method can be expected to give some improvement, but at the
expense of having to determine the functions wo and Kwo. Generally Kwo will have
to be calculated to high accuracy numerically. This requires the evaluation of the
kernel R(x—g) at the points xi—Ej where {xi}§ are the collocation points and
{Ej}T are quadrature nodes. Using logarithmic Gaussian quadrature one should be
able to evaluate these integrals fairly efficiently. Since for Bland's equation
the bulk of the computing time goes into the calculation of the kernel, there should
be an N where the amount of arithmetic needed to implement Landahl's method is less
for a given accuracy than using collocation directly on (11.1). This tradeoff point
will have to be determined experimentally and will be a topic of future investiga-
tion.

11.1.2 Landahl II

In oxrder to achieve a possible analytic simplification in the evaluation of
wo via (11.17) we consider the following modification of the previous procedure.

Assume that w can be decomposed as

w=wtw (11.19)
s ¢

where Yy is the singular part of w and v is the continuous part. In this case

Yy =H w (11.20)
o s
and the residual downwash is given by
w_ =W —KH—lw. (11.21)
R c

The residual pressure is obtained from

(H+K)lbR = wc—Kwo. (11.22)

TmmeTTs T T




-84~

. . . . N
Eq. (11.22) is solved by collocation to give an approximation wR to bg The ap-~
proximation to y is taken to be

N

IIJN =9 Fp- (11.23)

[e]

Using arguments similar to those above we arrive at the following theorem.

Theorem 11.3. Let @N be given by (11.23). Then @N converges to ¥ and

- -1
o-d Il = s ™l Ol xox ol +ll wpy ) L3 - (11.24)

Proof. See Ref. [58] for details. Note that from (11.24) the convergence rate
of Landahl II should be the same as that of Landahl I, but that wo should be easier

to evaluate[d
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11.2 Iteration

A common procedure in numerical analysis for solving an equation is to use
iteration. For linear equations Picard iteration is a well-knovn method. Appli-
cation of this to (11.1) determines a sequence of approximations to ¥ by the fol-
lowing scheme. Let wo be an initial approximation to ¥ and recursively define

‘pnr n>l by

B +KY__, = w. (11.25)
Since “H” = 1 a sufficient condition for wn to converge to ¥ is that [[k]| <1.
The error is given by
n
e-v Il < WP Il - (11.26)

From (11.26) one sees that the closer wo is to P the more rapidly wn converges to
p. If wo is chosen as a collocation approximation to ¥ then on the basis of the
above argument it seems reasonable that iterating on it would be a useful method for
accelerating convergence. The basic difficulty that we encounter is the apparent
problem of calculating more than one iterate, so that we restrict ourselves to con-
sidering the effect of a single iteration.

Before proceeding, we point out that our attention was drawn to this method
by the work of Sloan, Burn and Datyner [59], and Slcan [60], on the use of iteration
for Galerkin's method for integral equations of the second kind. It was apparently ;
first demonstrated in[59] that iteration on a Galerkin approximation gave super—
linear convergence. In addition to Sloan et al the method has also been used by
Phillips in conjunction with collocation for equations of the second kind [61].
Since we will discuss both collocation and Galerkin's method in this section a slight
change in notation is introduced. ¢§ will denote the collocation approximation to
Y and ¢§ will denote the Galerkin approximation [51.

Let @N be the first Picard iterate of w; defined by

7 c
+ = wW. .27
H¢N Kle w (11.27)
Theorem 11.4. @N converges uniformly to the solution P of 11l.1.

Proof. From (11.27) it is seen that E
PO S !
by = w-H Kq;N. (11.28)
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” -l . .
It now follows from the Sohngen inversion formula that H K is an integral operator

with Hilbert-Schmidt kernel [5]. Let K denote the kernel of H_lx. Then

1 53
s - _ 1-g - c
wN(x) w(x) I e K(x,g)wN(g)dg.
Similarly
1 I .
Bx) = wix)- I Y %;é R(x, £)v(e)at.

-

This gives

w(x)—ﬁN(x) K(x,£) [{(£) u (£)1de.

I
f———y

~
0

*g

-

By the Cauchy-Schwarz inequality

max |¢(x) w (X)|<C” Y-y

M|
-1<x<1 Ny

But Ilw—w;'|Y+ 0 so that @N(x) converges uniformly to ¢(x) 0O

From the uniform convergence of @N to ¢ we anticipate that the sequence {@N}
should be better behaved than {w;} , and possibly free of the Gibbs phenomena present
in L2 convergence. One also expects a more rapid rate of convergence than that for
collocation alone. For equations of the second kind the results of Phillips appear
to indicate this [61]. However we have not been able to prove this at present for
Bland's equation-

Using Theorem (4.5) of [5] as a guide we expect that for even moderate N that
the collocation and Galerkin solutions should be close, and it is for Galerkin's
method that accelerated convergence can be established.

Let wﬁ be the Galerkin approximation to ¢ [ 5], and observe that wg satisfies

G G
+ = .
HwN nNKwN an (11.30)
where L is the operator of orthogonal projection onto Span {Y }N. Let ws be the
first Picard iterate of w Then wN solves
S G
+ = . .
Hq;N K¢N w (11.31)

Applying T to both sides of (11.31) gives

NNHwN+nNKN¢N Nw. (11.32)

m—— o~ = - - e A A e e e e T e e e S e e ey v -
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Since wg satisfies (11.30) we get

s G
wNHwN = H¢N. {(11.33)

Using (11.33) in (11.31) shows that wz solves
S -1 s _
HwN+K(H nNH)wN = w. (11.34)

N

-1 . . .
Let QN = H "7 _H and observe that by the unitarity of H that QN is the operator of
orthogonal projection onto Span {an}ﬁ. This gives w; as the solution to

(H+KQN)w; = w.

We now consider the convergence of w; to Y. First, note that by the same argu-
ment that was used in Theorem 11.4 that w; converges uniformly to Y. However, here
we can establish a superlinear rate of convergence. Our result is a generalization

of Sloan's ([59]1,[60] for integral equations of the second king.

2
Theorem 11.5 ¢: converges in La to ¢ and

-1
Iv-vgll, < Nk ™ 1 Il x-xll Il v-g il (11.35)
Proof. First observe thatllK-KQN” - 0 [5]. From this it follows that (H+KQN)_1
exists for N sufficiently large.. Thus

1S = (gt -1
YN (H KQN) w.

This gives

w—w§ = (H+K)_lw—(H+KQN)_lw
-1
= (HHKQ ) " (KQ ~K) Y. (11.36)
Now
Y = QNw+(I-QN)w,
so that

(KQ-K)Y = (KQ_-K)Q Y+ (KQ ~K) (T-Q ).
Since Q; = Qur

(XQ)Qy-KQ y = KQ y-KQy =0. (11.37)
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Using (11.37) in (11.36) gives

s _ -1 _ 0
w-wN = (H+KQN) (KQN K) (P QN¢) (11.38)

Taking norms on both sides of (11.38) gives the resultf]

By a similar argument to that above it is easily shown that

Fw-vgll, < Il o ™ Tv-g i, - (11.39)
Comparing (11.35) and (11.39) shows that the rate of convergence of w; to ¢
is enhanced by the factor I]K-KQN“ over that of wg. For steady problems the log-
arithmic terms in K will be absent so that ” K—KQN” should converge to 0 rapidly
thus providing a more rapid rate of convergence than wg. For unsteady problems

it follows from Theorem (4.5) of [5] that

(| K—KQN” = 0(1//N), (11.40)

so that for discontinuous downwashes it follows that
lv=v2ll. = o/m, (11.41)
Ny

a rate equal to that observed for collocation. As indicated in section 10, this

/

i 3/2, . . s
may very well be pessimistic, however a rate no better than O(L/N )} is anticipated.
This at present appears to be too slow a rate to achieve the desired accuracy of

0(10—3) error with N<24.
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11.3 Reverse flow theorems i

A method of long standing in the aerodynamics literature for solving flow
problems has been the use of reverse flow theorems [55],[56]. Originally intro-
duced as a technique for decreasing the computation time in calculating 1lift and
pitching moment it also appears to have some promise for increasing the rate of
convergence of integrated guantities for problems with flaps.

It was shown in [5] that such quantities as 1ift, pitching moment and gener-
alized aerodynamic forces could be calculated in terms of inner products <f, ¢>Y
where f is the function representing the particular moment of interest. The basic
idea of a reverse flow theorem consists of evaluating <f,1p>Y in terms of the solu-
tion to an appropriate adjoint problem.

To be more precise let H* and K* be the Hilbert space adjoints of H and K [5]
and consider calculating the inner product <f,w>Y,where feLi. Let ¢Y* be the unique
solution to

(H*+K*)p* = f. (11.42)
(That y* exists and is unique follows from the fact that H+K is one to one and the
Fredholm alternative.)
Theorem 11.6. <f,w>Y = <w*,W>a (11.43)

Proof. By the definition of adjoint we find that

il

<£, P> < (H*+K*) y*, ¢>Y = <¢*,(H+K)¢>a
= <w*,w>aD
From the theorem we observe that if f is “smoother" than w, then solving for
P* should present a better behaved problem than solving for ¢ directly if one only
wants to calculate <f,1p>Y rather than ¥ itself.

Theorem (11.6) suggests the following scheme for approximating <f,w>Y. Let

wﬁ be a collocation approximation to Y* and take <w,¢§>Y as an approximation
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*
to <f,w>Y. It is easily shown that wN converges to ¥ so that <w,¢;>a converges
to <w,w*>a = <f,¢>Y. Thus the method is well defined. Using the Cauchy-Schwarz
inequality it follows [48] that

[<ewe, <wrugog <l wll LI coxmgull +ll -l a1.40
If £ is a polynomial, then for N sufficiently large f = fN and (11.44) becomes
<t v Ll wll G coxgowx]l 1. (11.45)

The convergence given by (11.45) is then analogous to that achieved using a
"degenerate" kernel rather than a projection method [51].

Although (11.45) indicates good convergence for a "polynomial" moment the
method discussed above will generally be ineffective if £ represents a discontin-
uous moment such as the hinge moment, because in this case the adjoint problem (11.42)
is of the same type as (H+K)y=w. Since for some problems the reverse flow Theorem
11.6 appears to have improved convergence properties we feel that its use should

be further investigated.

11.4 Other Methods

There are other procedures that have recently been proposed for the solution
of problems with flaps. Among these are the semi-analytic methods of Williams [62]
and [63], and several projection methods proposed by Milne [56]. These techniques
have yet to be investigated and would require one to develop algorithmg different
from that employed in TWODI. Although we have ruled out none of the above as
future candidates, our analysis indicates that none of these would provide suffi-

ciently increased accuracy without making major alterations in our existing code.
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11.5 Extrapolation

As the discussion above pointed out it is presently felt that incorporating
any of the above methods of convergence acceleration would not provide an acceptable
degree of accuracy without making substantial changes in TWODI. For this reason
we have begun investigating methods which can make the maximum use of the output
of our program. As we presently have the capability of solving many problems at
once, and with considerable efficiency, a reasonable approach is to try to combine
these solutions effectively for enhanced accuracy. A standard procedure for doing
this in numerical analysis is the method of extrapolation [50]. Here various solu-
tions computed for different numbers of basis elements are combined either linearly
or non-linearly to produce solutions which have higher order accuracy than any of
the original ones. Such methods are commonplace in codes for solving differential
equations [37],[64] but seem not to have attracted much attention for the solution
of integral equations [50],[65]. As we shall see, their effective use requires
one to have available known asymptotic expansions for the error in the numerical
approximation as a function of the number of basis elements. Such expansions seem
to be lacking in general for collocation methods and in particular for the solution
of Bland's integral equation. However, using the error estimate (10.7) as a guide,
along with the examination of results for the free air case we show how to obtain
the proper form of the error and thus to extrapolate correctly.

Although many forms of extrapolation are possible, we have chosen the analogue
of Richardson extrapolation [50] because one can easily obtain the correct order
of convergence. For other methods, such as Aitken extrapolation, this is not easily
done [37]. We begin by presenting the basic theory of this method.

Let o be a complex number and let {an} be a sequence converging to a. Suppose
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it is known that the error en= a-an has an expansion of the form

- = 91 G2
cn al/n +a2/n Feeo (11.46)

where 01<0,<03...The sequence {an} is not necessarily convergent but is assumed
to have the property that

m .
lim n°M(e_- J aj/n"j) = 0. (11.47)

n->o j=1

Such an expansion is called asymptotic.
For simplicity we restrict ourselves to the case where all the Gj's are integers

and in particular assume that 0j=j. Thus €, has the form

2 3
e = a /n+ta_/n"+a./n +... 11.48
L = a,/mta /n"va/ (11.48)
o)
The basic idea of Richardson extrapolation is to compute subsequences {akn}k_l,
and then toc combine these in such a way to form new approximations which converge
, \ 1
more rapidly to a than {an}. For example, consider Zn = 2a2n—a .  Then
1 2 2 2
a~2- = [2(a-a./ n-a_/4n ...)-( -a,/n-a_/n"...)] = -a,. /2n"+... (11.49)
n 1 2 1 2 2

Thus {Zi} is accurate to order l/n2. {Z&} is referred to as a sequence of first
order extrapolations of {an}. .
For each j it is possible to calculate a sequence {Z;} which has the property
that
u—z;]1 = aj'/nj+l+a§/hj+2... (11.50)

Such a sequence will be called a sequence of jth order extrapolations of {a }.
n

2
For example, one possibility for Zn is
Z2 =q /3-20,_. +8a, /3 (11.51)
n n 2n 4n’ 7’ .
and for Z3
n

3
= - 21+ -8 + - .
Zn an/ 1 2a2n a4n/3 64a8n/2l (11.52)

e
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Higher order extrapolation formulas can also be obtained. We illustrate these with

a derivation of (11.52).
From (11.48) it follows that

2 3
e = al/n+a2/n +a3/n +ooes

2 3
= + /8n"+. ..,
€on al/2n a2/4n +a3,8n
€, = a,/4n+a /16n2+a ’8n3+ ..
4n 1 2 3/ sens
2 3
€an = a1/8n+az/641 +a3/5121 ...
(e,B,7) are now determined so that
1,4
+ + = ...
®n ann Be4n+Y€8n a4/n *

From (11.53) this requires that

o/2+8/4+y/8+1 = O,
o/4+8/16+y/64+1 = Q,

o/8+8/64+y/512+1 = 0,

Solving (11.55) gives
o = ~14,8 = 56, vy = ~-64.

Substituting into (11.54) gives

(u-an)—14(u—u2n)+56(u-a4n)—64(a—a8n)

_ 1,4
= a—(-un/zl+2a2n/3—8a4n/3+64a8n/2l) = a4/21n +...

Letting

3
Zn = —an/21+2a2n/3-8a4n/3+64a8n/21

shows that (11.50) is satisfied for j=3.

(11.531)

(11.532)

(11.54)

(11.551)
(11.552)

(11.553)

(11.56)

In practice it is most common to use the subsequences {“2kn}' lfkfj, to obtain

the sequence {Zi}. Solving the following set of linear eguations allows one to
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obtain the appropriate coefficients for jth order extrapolation.

r 3 - o

/2 /4 ... 1/2 1 311 11

1/4 1/16 1747 8, 1

. . . . = . (11.57)

D t :

3 2j j
127 12%0 ... 12 1
3 / / / 4 L] J L J
In this case we have
. 3+1
EntBrCan Bt nt e - TRyl = Ay /nT T (11.58)

Since the coefficient matrix in (11.57) is a Vandermonde matrix [5], equation
(11.57) is uniguely solvable and the sequence {Zg} satisfying (11.58) is well defined.
To determine the applicability of these formulas to the solution of problems

with flaps the results of Tables 3-~6 were used. Here we observe the curious fact

that for a midchord flap the subsequence {uZH}igl(an= lift or norm) appears to sat-~
8 6
isfy (11.48) and for a three-quarter chord flap the subsequence {a_ } appears to

3n"n=1
have the same property. Thus for a mid-chord flap it seems to be appropriate to

extrapolate on {a

} and for the three-quarter chord flap we use {a3,a6,a 1.

2% % %16
This oscillatory behavior, with the period of oscillation apparently depending on

12

the location of the hinge point was unanticipated based on our experience with the
rapid and monotone convergence of TWODI-I for smooth downwashes. At present it
appears that the period of oscillation is independent of the kernel K so that a

suitable subsequence for extrapolétion can be obtained by solving a series of steady

free air problems. This can be done rapidly with our existing program.

2

1
To see the effect of using successively higher order extrapolations 28, Z4,

and Z; were calculated for the lift and norm for the mid-chord flap and Zé ;

were obtained for the three quarter chord flap. The results are listed in Tables
7-9 below.

: 2

Table 7. Extrapolation of CLB and norm for a midchord flap (M=0,k=0,n=c)

% error % error

Noxm CLs (norm)  (Cp,g)

Exact 1.60337 5.14159
zé 1.60241 5.13466 -.0599 -.1348
z2 1.60327 5.14069  ~.0062 ~-.0175
z3 1.60335 5.14139 -.0012 -.0039
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Table 8. Extrapolation of CLS for an oscillating f£lap hinged at the 50% chord
(M=0, k=.1, n=x)

real imag magn phase % exrror (magn)
Exact 4.33227 -0.43177 4.35373 -5.69
Z; 4.32647 -0.43122 4.34791 -5.69 -0.1337
ZE 4.33153 -0.43171 4.35299 -5.69 -0.0171
Z; 4,.33210 -0.43176 4.35359 -5.69 ~0.0033

Table 9. Extrapolation of CL6 for an oscillating flap hinged at the 75% chord
(M=0, k=.1, n=«)

real imag magn phase % errox (magn)
Exact 3.20444 -0.48982 3.24166 -8.69
Zé 3.19235 -0.48792 3.22942 -8.69 ~0.3776
Zi 3.20191 -0.48944 3.23910 -8.69 ~0.0790

Table 10. Effect of using incorrect subsequences for extrapolation

real imag magn phase % errorx (magn)
midchord flap

Z; 4.32230 -0.43083 4.34372 ~5.69 ~0.2300
zg 4.57927 -0.45301 4.60163 -5.65 +5.6939
three~-quarter chord flap

Z; 3.51114 -0.53452 3.55159 -8.66 9.5608
Zi 3.77727 -0.57288 3.82352 -8.92 17.9494
zZ 4.00144 -0.60507 4.04693 -8.60 24.8413
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The results are quite interesting showing that 4~5 decimal accuracy is obtain-
ed using at most 16 basis elements. Thus it appears that an error of 0(10—3) can be
obtained using the present code, followed by the minimal amount of manual arithmetic
required to do the necessary extrapolations.

As an independent check on the validity of the above procedures we have extra-
polated some results presented by Milne [56] in his development of finite element
methods for solving (3.8). Table 11 taken from [56] gives values of 1lift, pitch-
ing moment and hinge moment for approximate solutions to (3.8) using basis elements
which were piecewise linear.

Again it is easy to show that the errors €, satisfy €, = al/n+0(l/n2) so that
extrapolation is feasible. Second order extrapolations are given in Table 11. It
is interesting to note that the "exact" values are obtained using 48 basis elements
with extrapolation, whereas the raw value for lift and hinge moments are correct

to only 2 significant figures using 60 basis elements.

Table 11. Convergence of section coefficients for 50% flap using finite elements
(M=0, k=0, n=«)

No. of basis Pitching Hinge
elements Lift Moment Moment
Exact .3460 .1365 .0780

12 .3410 .1353 .0756

24 .3435 .1359 .0767

36 .3443 .1361 .0771

48 . 3447 .1362 .0775

60 .3450 .1362 .0780

ziz .3460 .1365 .0780

On the basis of these observations we feel confident that the use of extrapola-
tion will result in accurate solutions for flow problems with flaps. The main ob-
stacle remaining to complete automation seems to be the necessity of performing the
preliminary analysis of a sequence of free air problems in order to determine the
appropriate subsequence for extrapolation. In this regard it is interesting to note
that while Bland's collocation method produces oscillatory convergence, Milne's
finite element procedure does not. Monotone convergence is, as we have seen more
desirable and further investigation of the methods studied in this section for this

behavior should be done.
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§12. Efficient integration of sinqularities in the kernel

The basic accuracy of the TWODI program for smooth downwashes is about 6 decimals
in steady flow and 3 decimals in unsteady flow using 5-10 basis elements. We will
now show how this can be improved to 6 decimals in both steady and unsteady flow with

little increase in the amount of arithmetic.

12.1 General procedure for logarithmic singularities

An efficient solution of the airfoil equation (3.16) requires that the integral

for the collocation matrix

1
-1 /1-E -
Cmn - ‘lT Jl l+€ K(xm Eerk,n,---)Yn(E) dE (12-1)

be computed efficiently for all values of the parameters M,k,n, etc. In general, the
kernel contains a dominant Cauchy singularity, a weaker logarithmic singularity, and
is otherwise analytic. It can be shown that

ik -ik
e

1 -ik
K(X,k,M'n,--.) = ; - EZ_ xFl (xlkIM) lOng'*e X F2 (x,k,M,m---), (12-2)

where F; and F; are analytic. We will identify these functions below.

The procedure originally used by Bland [ 8], [ 9] to compute Cp, is the one
presently used in TWODI and is described in section 6. The Cauchy singularity is
integrated in closed form using the Akheizer-Bland transform (5.3) and an additional
closed form integration is obtained by using the logarithmic transform (5.24). The
remaining continuous part of the kernel multiplied by the appropriate basis function
is then integrated approximately by Jacobi-Gaussian quadrature (5.30). Thus the
only source of error (other than roundoff) in computing Cpn Presently is quadrature
error from integrating the continuous part of the kernel.

It is well known [37], [38} that high precision Gaussian quadrature formulas
work best with analytic integrands. Splitting the kernel into the Cauchy, logarith-

mic and continuous parts as described in section 6,

o2 log|x} + K, G,k,Myn,...), (12.3)

1
K(x,k,M,n,...) = ;
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we see by (12.2) that the continuous part of the kernel is given by

xFl (x,k,M)) 1og|x| - e_lksz (x,k,M,n,...) (12.4)

ik . -
K, (x,k,M,n,...} = §§‘(l-e

ik:

and is clearly not analytic because it contains nondifferentiable terms of the

form

X 1og|x], %2 loglxl,...

To assess the errors resulting from integrating K. without properly accounting
for these logarithmic terms, we computed

1
J xnlog x dx
0

using Legendre-Gaussian quadrature for various n and for various numbers NQ of
quadrature points. The results, shown in Table 12, indicate that for n=1, 16 point

quadrature is at best 5 decimal accurate.

1
Table 12. Error in J xnlogxdx using NQ point Legendre-Gaussian quadrature
0

% error n=20 n=1 n=2
NQ = 1 30.685 -38.629 -55.958
NQ = 2 10.412 -3.1413 2.3139
NO = 4 3.14¢4 -.25967 . 04269
NQO = 8 .87610 -.01956 .00083
NQ = 16 .23207 -.00136 .00001

Since the number of gquadrature points used in TWODI equals the number of pres-
sure basis functions, it is not reasonable to expect to obtain accurate calculations
for unsteady flow using a small number of basis functions. For example, using 8 ba-
sis functions we might expect at most 3 or 4 decimal accuracy. This has been borne
out in practice; using NP = 8, the TWODI-I program was 3 decimal accurate for un-
steady flow [5, p.81].

In order to correctly integrate the logarithmic kernel singularity in the pres-

ence of leading and trailing edge pressure singularities, it is necessary to separate
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the interval [-1,1] into four subintervals [-1,al, [a,x], [x,b] and [b,1] where

-l <a<x<b«<l. (12.5)

Making the necessary transformations gives six different kinds of integrals, all
of which can be evaluated quite accurately (12 decimals) using tables stored in

TWODI:

A=

J /l+€ log Ix—EI f(x,&)dg

_ V1+a 1 1
== o /ﬁ_[v1—£ log (x-£)f(x,£)]du £ = -1+(1l+a)u
_xma [y /2 e = x-(x-a)
p o og 1+ X,& u £ = x—-(x-a)u
(x-a) log (x—a) 1 1-¢§ - _
+ — JO [ i:g‘f(x:i)]du E = x-(x-a)u
(b-x) log (b-x) (! 1-¢ = -
+ T JO 1+ f(x,£)]1du £ = x+(b-x)u
_ 1
- bex J log —-[ 1= f(x,&)1du £ = x+(b-x)u
™ 0 E
b (! 1 1-¢
== log( £ a = 1-(1-b)u. 12.6)
- Jo /H /ﬁ og (£-x) f(x,£)]du 13 ( Yu ( .

Each of the six integrals appearing in the right hand side of (12.6) possesses an
integrand which is the product of an analytic function shown in square brackets,
multiplied possibly by a function representing an inversé square root or logarith-
mic singularity. For obvious reasons, we call these six integrals the leading edge
inverse square root, upstream logarithm, upstream continuous, downstream continuous,

downstream logarithm, and trailing edge square root parts, respectively.
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12.2 The free air incompressible case

This is the simplest case with which we can test the merits of integrating
the logarithmic singularity in the kernel using high precision Gaussian quadrature.
We will show that a thousand fold increase of accuracy results, with only five ba-
sis functions being required to produce six decimal accuracy. Previously, eight
basis functions produced three place accuracy. Since accuracy can be traded for
reduced computer time, the results of this subsection constitute an important step
toward TWODI handling its own accuracy control in the future.

In this case the kernel may be written as [5,p.7]

. -ikx, ) i
K(x,k,0,®,...) = % - ike T F(cik|x]) + 1 sikx) + 12—“) (12.7)

where Ci and Si are the cosine and sine integrals. They are given [66,p.232] by

Ci(z) = y + log z + czo cn® 2 (12.8)
¥ & (2n) (2n)! -
n=1
® n 2n+l
si(z) = ) L 2 -, (12.9)

2 (2n+1) (2n+1) !
n=0

where vy =.57721566490153... is Euler's constant. Combining the above, we obtain

-ikx (J.kX)

1 .. -ikx .
K(x,k,0,»,...) = " ike loglxl - ike (log k + vy + 2 Z (n)( ) (12.10)
Thus we can identify the analytic functions in this case as
Fl(x,k,O) =1, (12.11)

(1kx)
n) (nY) (n')

F2(x,k,0,w,...) = ik (log k + y + im + Z

5 (12.12)

m=1
The effect of using equations (12.6) and (12.10) to integrate the complete log-
arithmic singularity, leaving an analytic integrand to be done by Jacobi-Gaussian
quadrature is shown in Table 13 for the case of a plunging airfoil. The exact solu-
tion was obtained from the Kussner-Schwarz comparison [5,p.83]. Using the earlier
method based on the logarithmic transform with an:{logle singularity in the contin-
uous part of the kernel, 8 basis functions produced only 3 place accuracy. Table 13

shows that this is true both of TWODI-I using Bland's kernel with very large height
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to chord ratios (and large computer times), and of TWODI-III which calculates the
special kernel (12.10) which is more efficient; this verifies that using Bland's
kernel with n = 300 is an accurate representation of (12.10). Thus the rather low
3 decimal accuracy obtained by the original method is due to the manner of integrat-
ing the remaining part, Kc, of the kernel. Finally, Table 13 shows that using the
analytic form of the remaining part of the kernel produces six decimal accuracy with
only 4 or 5 basis functions.

The evidence presented by these data strongly indicate that the mosg* efficient
computing strategy dictates a switchover to integrating the singularities in the

kernel separately.

Table 13. . Method of integrating singularities in the kernel

Method KC type NP CLl - plunge mode (k = 1)

-2.51156+3.389371 = (4.21850,126.540)

—-2.50990+3.38758i = (4.21608,126.540)
-2.50990+3.38757i = (4.21607,126.540)
-1.59997+1.58414i = (2.25153,135.280)
-2.55260+3.426141i = (4.27249,126.690)
-2.51089+3.38900i = (4.21781,126.530)
-2.51156+3.389371 = (4.21851,126.540)
-2.51156+3.38937i = (4.21850,126.540)

Exact -

TWODI-I  x log|x|!
TWODI-III x log|x|?
TWODI-III analytic2
TWODI-III analytic?
TWODI-III analytic?
TWODI-III analytic?
TWODI-III analytic?

Vi W= oo |

1Using Bland's kernel with n = 300. BApprox. 20 min CPU.
2Using eq. (12.10) for kernel. A few sec. CPU.
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12.3 The free air compressible case

Identification of the singularities in the Possio kernel is certainly impor-
tant to an efficient solution of the free air compressible case, and also may prove
useful in efficiently computing more general kernels for unsteady flow in wind tun-
nels with slotted and porous walls.

The Possio kernel may be expressed [5,p.2] as

- - Tk -ikx (2) kM|[x (2) kM
K{x,k,M,®,...) = = 282 « —— (iM sgn(x) H (—7%?i0 - Ho - (-2£§l0)
, X
+ 2B g 1B L x J e 1A H_ () KMIA) 0 gy (12.13)
m M o B B2

where the Hankel functions of the second kind [66,p.360] are given by

(2) _ .
HE = J2 i Yg' (12.14)

Clearly (12.13) is not in a form suitable for numerical computation. Substituting

(12.14) gives

. _ -ikx , ikx _ mkMi kx|, _ . o kMix]
K(x,k,M,®,...) = e {e5§7 [- Sgz sgn(x) (7, ( 22 S A anl
+ o (3 CREL -y (—I—L))] 109 1B
) . ikxu
Jmexi fUURT o lxfuy detfxfuy o (12.15)
2B2 |, o R2 o R2

In order to identify the singularities in (12.15), we first identify the speci-
fic singularities, as well as analytic functions, which appear in the Bessel func-

tions. Clearly

)"
z % 4
3,(2) = () ) T (12.16)
m=0
is analytic. Let
W) = -y, P = Y(m) + == - y#) = if n>2 (12.17)
n m -

m=1
denote values of the psi or digamma function [66] for integer arguments. Then

it follows that
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=2 z 2
Yo(z) = (Y+log5) Jo(z) + = Go (z), (12.181)
—. 2 .2 z -2
Yl(z) = - + p~ log > Jl(z) p Gl(z), (12.182)
where
2
& L & L, &°
G (2) = 5 - (S 4 (WZ - ., (12.19,)
(11) (21) (31)
o z2 n
_z %)
G, (z) =2 ¥ (p(n+l)+p(n+2))_" 4 . (12.19.)
1 4 —_— 2
n=0 n! (n+l)!

Obviously Go and Gl are analytic. We note that they may be computed using (12.19)

or, using standard Bessel function subroutines according to

™ z

Go(z) =3 Yo(z)—(y+log—2) Jo(z), (12.201
il 1 2

Gl (z) = 5 Yl(z)—; + logE Jl(z). (12.202

Combining the above and rearranging it can be shown that

1 ik =-ikx kMx ikx
K(x,k,M,®,...) =X "B ° logfx[[(J (—2—)— 1MJ ( 2))e g2
1 s
. ikxu kMxu
ikx JO e a2 JO( 82 ) du]
ikM2x
-ikx, e B2 -1 1k kMx ik
- e {[———_x YY) JO( 32) + 82 G (—Bz—)
ik kM TkMi
- G (rvies S I (5 - G 90
ikx
kM
= ekl RZ2
+B2 log = 28 Iy B2) BZG ( )]eB
X 146 2 ;  ikxu
ik + Tk xi R2 kMxu, 2i
+ 8 log —— TV [0 e (Jo( po Go( )) du
5 1 ikxu
k<x 2 kMxu
+ a2 (y+log 282) JO e B J ( 82 —>—) du

2 1 raklunishad
X
- 2X J 1og %e B2 JO(kqu) aul, (12.21)

)

)
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which in view of (12.2) gives
ikx ikxu
kMx, kMx, B2 _ . 1 g2 kMxu
= [J () - il -
Fl(x,k,M) [ 0(82) iM Jl(B2)]e ikx J‘ e JO( 82 ) du (12.22)
d
an -ikM2x
e B2 -1 mk kMx ik kMx
Myw, ..} = S—E = - 0 T (D) 4 2=
F2(x,k M ) " 282 o( 32) B2 Go( BZ)
ik kM kMx TKMi kMx
— + — —_—
+ 22 (v+log 282) Jo(—é-z-) + 262 Jl(Bz)
ikx
kM kM kMx _ ﬂ kMx —o
+ &2 log _262 I, (_32 ) 5 G, ('Ez—)]e B
ikxu
ik 1+8 . wk?xi 1 B2 kMxu 21 kMxu
+ == _— + - =
2 log ” 282 JO e (Jo( g2 ) T Go( 32 )) du
k2x kM, (! Eng KMx
. 2 X S B u
- 82 (y+log 282 J Jo( 82 } du
k2x (1 1 B
- Ex L T2 3 gu. )
g2 JO log a e JO( 82 ) du (12.23)
Equations (12.22) and (12.23) display the desired functions F1 and F2, but
they are not yet in final form and (12.23) is still indeterminate for M=0. Fl
can be put into final form by first noting that
J' =-J (12.24)
[o) 1
and integrating by parts to yield
ikxu ikx ikxu
1 Tgao R2 1 Tpo
. g2 kMxu 2 kMx, B2 B2 kMxu
= -1+ - -
ikx JO e JO( 82 ydu B (Jo(7§fﬁe 1)+kMx . e Jl( 82 } du (12.25)
Substituting (12.25) into (12.22) and simplifying, we finally obtain
ikx ikx ikxu
2 kMx, B2 . kMx, B2 1 g3 kMxu
, = 1+ — -1) - J Y - . .
Fl(x,k M) 1+M (Jo( 82)e ) iM 1(7;f09 kMx JO e Jl( g2 ) du (12.26)

In this form (12.26) reduces by inspection to (12.11), is easy to compute, and we
see that
(12.

F, (kM) = 1+M20 (kx) 27)

is analytic as asserted earlier.
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We now obtain a similar reduction for F2. Integrating the last term in (12.21)
by parts gives
ikxu
k2x (! g2 kMxu
82 JO log e Jo( B2 )} du
ikxu
Sk [l e e g ddmy ik L1 = R . LI (12.28)
o u o' B2’ B2 9y B2 1 B2 : ’
(We note that when M=0, (12.28) reduces to
1 _ikxu_ © . n
ik J & lgy -y k0 (12.29)
0 u nop (@) (o)

which is the last term in (12.12).) Substituting (12.28) into (12.23) gives

ikxu

1e By kMx

. e - u
F2(x,k,M,m,...) = ik J 2 JO( 82 } du
0
dkxu
ik2mx (1 1 g2 kMxu
+ =K 1og = -1 J
2z JO o9 3 (e 1) l(—Ez—ﬂ du
-ikM2x
82

. € -1 im kMx 1 kMx
+ lk[T + 287 JO(‘E‘Z—‘) + a GO(B—Z)

3, &5

kM kMx M
+ 75 (y+log 2g2) Yoz * = 8

8 282

ikx

g2

iM kM KMz, . iM _  kMx
287 71 0g7) * gz G () le

ikxu
ik 148 mk2xi 1 o B2
M ZBZ 0

kMx
B2

kMxu
B2

(7 (K 21 . )) du
(o] ™ o

ikxu

k2x kM 1 783 kMxu
+ 7;;—(y+1og 5570 JO e Jo(_gf_) du. . (12.30)
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Integrating by parts again, it follows that

. ikxu ikx ! ikxu
KMx, ikx . B2 kMxu, o 02002 g (KMX, B2 _ B2 kifxu
JO(82 )e?ar ikx Joe Jo( 52 ) du=BR“+M JO(62 Ye kMx 0e Jl( &2 Ydu. (12.31)

Substituting (12.31) and the identity

. . . 2 2
X kM Tk ik 1+8 , im, ik M 2B 1+B
M, Tk, X T8 _ ATy 1K 2 q0g 2P *b
ik (y+log 252) 5+ B log m ik (Logk+y+ 2)+ 2 (l+B og =+ log 282) (12.32)
into (12.30) gives
ikxu
F (KM, ...} = ikilogkiy+ AT+ |1 € o g (XY a0
o5 (XK My, . i ogkty+ = 3 2z u
Q
-ikM2x
+.ip[§L_jfi_;l£ + ME.(EE.+ +1 lglo J (Eﬁi}
¢ Tkx gz ' TYTIegop2 Yo'z
iM i kM kMx
- (— 4} —— e
gz (5~ *logggy) Iy (557
. ikx
1 KMx, . iM kMx, . B2
+ = fohmnbend —_ pealimid
g2 Co (2" g2 €1 gz ) 1e
. ikxu
ik2x kM i kMxu, ., ., kMxu g2
- == + = —
Y IO[M(Y log5E§-+ 5 ) Jl( 82 )+1GO( 82 ) e du
ikxu
ik2mx (! 1 kMxu g2
+ T J'Olog a Jl( 82 )(e —l) du
ik , M2 2g2 1+8
+ 8(l+8 log—ﬁ— + logEEE) (12.33)

which, in view of (12.29), reduces by inspection to (12.12) when M=0, and is clearly

analytic with the property that

F, (%, J,M,0,..0) = By (x,k,0,...) + 0(kM’1log M) . (12.34)
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One reason for the importance of (12.27) and (12.33) is the ease with which
they can be computed numerically compared with the original expression (12.13).
In TWODI, Bland's kernel (3.10)-(3.11) is presently used for all cases except the
incompressible free air case given by (12.10) and the steady porous wall case
given by (4.13). However, using Bland's kernel for free air conditions is ineffi-
cient because the series expressions in (3.11) are quite slowly convergent for
large values of n. We have already seen in Table 13 the dramatic benefit of using
the efficient expression (12.10) to compute the kernel for the special case of in-
compressible flow in free air. We would expect a comparable reduction in computer
time if (12.2), (12.27) and (12.33) were used to compute the kernel for compressible
flow in free air. Furthermore, (12.2) represents a computationally efficient split-

ting of the kernel into three parts

K(X,K,M,n,...) = % + R ORI K G K M) (12.35)
where
ik =-ikx
Ky (K M)= - e loglx| Fy (x,k,M), (12.36)
and where
K, (x,k,Mn,...) = Ky (%K, M@, 00) + AR, (x,k,M,n, .. .) (12.37)
with
K, (0, M@, . .0) = _e ikx Fy (KM, .. (12.38)

and with AK2 representing the interference kernel due to the wind tunnel walls. Since

we now have computationally efficient expressions for all guantities except AKz and
since the Fourier transforms of all kernels are easily obtained, it may be that the
application of Laguerre-Gaussian quadrature to the expression

AKz(X:k:M,n,---)= elsx[i(slklMlnl---)_ﬁ(SIkIlel"-)]ds (12.39)

=

©

is an efficient way to compute numerically the interference kernels for porous as
well as slotted wall tunnels. Since the determination of the unsteady porous wall
kernel remains an open problem, the possibilities of this approach will have to a-

wait future research.
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§13. Steady airloads for porous wall tunnels

In this section we present numerical computations for steady airlcads in ideal
porous wall wind tunnels; i.e., those governed by the viscous effect boundary con-
dition (2.10). Agreement with previous results is demonstrated and new results
are given in the form of compact three dimensional graphs showing airloads for all
possible combinations of Mach number, height to chord ratio and viscous effect ven-
tilation coefficient. These graphs are for a fixed downwash but otherwise include
all possible flow conditions. They can be generalized to unsteady flow but we have
not done so. This section is an extension of similar results by us [5,§811-12] for
fixed Mach numbers in ideal slotted wall tunnels; i.e., those governed by the mass
effect boundary condition (2.9), and uses the parametric analysis presented above
in section 4 to combine three independent variables (M,n,v) into two (Bn,Rv).

Table 14 and Figure 4 present values of lift coefficient and center of pressure
vs. leakage angle f. The center of pressure is relatively insensitive to small
amounts of ventilation and shifts more strongly forward as the open jet condition
is approached. The trends in both 1lift and center of pressure using the ideal
porous wall boundary condition differ appreciably from the trends obtained using
the ideal slotted wall condition. This is evident upon comparing Figures 4 below
with Figures 14 and 16 in [5]. Since the limiting case of open or closed walls are
independent of the boundary condition selected, verification with previous results
is obtained automatically. Only 5 pressure basis functions were required to obtain
6 decimal accuracy. Also, the computations proceeded gquickly since the kernel
(4.13) is in closed form.

Table 15 and Figures 5, 6 and 7 present 1ift coefficient, pitching moment co-
efficient and center of pressure for the full range of Mach number, height to chord
ratiol! and ventilation. The capability to do this so simply is a direct result of
the parametric reductions

(x,M,n,v) > (=, Bn,Bv)
Bn

presented in section 4. The doubly infinite domain of the airload surfaces is made

compact by the transformations

1y 6

- -1
z = tan (8\)

- -1.3

= tan™+ ().
n (Bn)

1in the present context, we restrict our consideration to tunnels with acoustic
height to chord ratios not less than 1; thus 1<fn<~. This restriction is entirely

one of context since the numerics are well behaved for narrower tunnels.
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The lines eﬁ=o correspond to the free air condition and show constant airloads for

all ventilation conditions; this is in keeping with the physical condition that air-
loads not be affected by the tunnel walls when they are infinitely far away. The
lines §=0°correspond to a completely closed wall and indicate that both CLa and cMu
increase as the walls become closer together; at the same time the center of pressure
moves aft. The lines ;=90° correspond to an open jet tunnel; CLa and cMa decrease

as the walls become closer while the center of pressure shifts forward. Between these
bounding lines, the airloads are shown to be continuous. Finally, by comparing the
lift and moment surfaces, it is clear that the ventilation coefficients corresponding

to zero lift interference differ from those corresponding to zero moment interference.

Table 14. Lift and center of pressure vs. ventilation for a porous wall tunnel

M=.85 n=7.5 w(x)=1 NP<5 (6 decimal accuracy)

¢ CLa Xep

0° 12.235 .25624

15° 11.460 .25633

30° 10.739 .25529
45° 10.051 .25529
60° 9.4086 .24936
75° 8.8017 .24416
90° 8.2270 .23723

Table 15. Section coefficients vs. M, n and v for unit downwash

- -1,
B cLa Sn tan (Bn)
z 0° (free) 15° 30° 45°
0° 6.28319 6.46436 7.06254 8.29957
30° 6.28319 5.62903 5.31359 5.28501
60° 6.28319 4.89657 3.97490 3.34116
90° 6.28319 4.24753 2.89934 1.91357
8 Cym 6, = tan-l(iLo
o n Bn
z -+ 0° (free) 15° 30° 45°
0° . 000000 -.022470 -.094292 ~.233113
30° . 000000 -.016798 -.076374 ~.197892
60° . 000000 . 001509 -.011706 ~.060754
90° . 000000 .030282 . 085436 .132578
11
xCP en = tan (Bn)
z 0° (free) 15° 30° 45°
og . 250000 . 256952 .276702 .306175
30 . 250000 . 255968 .278747 .324888
60° . 250000 .249384 . 255890 .286367

90° -250000 .235741 -191065 .111435
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12 (M=.85,n=7.5)

10

8
A Bland [17]
6 = Fromme and Golberg [2}
Solution by TWODI using (4.13)
4
ba—— closed wall open jet 4
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4. Steady lift and center of pressure vs. ventilation for a porous wall tunnel
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Figure 5. Steady 1lift vs. M, n and v for unit downwash
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Figure 6.

Steady moment vs. M,

n and v for unit downwash
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-1,1
Bn—tan (Bn)

Figure 7. Steady center of pressure vs. M, n and v for unit downwash
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§14. Steady and unsteady interference calculations for airfoils with flaps

The nature of unsteady aerodynamic interference in wind tunnels is not well
understood at the present time, especially when the walls are ventilated. This
problem is made mathematically more difficult when flaps are present because of
the attendant downwash discontinuity at the hinge and the resulting slow conver-
gence of the numerical calculations. In this section, we present new results for
steady and unsteady lift interference on airfoil with flaps at various combinations
of Mach number, reduced frequency and wall ventilation condition. These results
are based on the method of convergence acceleration by extrapolation to the limit
as described in section 11 above.

We take as our configuration of interest an airfoil of chord 180mm with a 45mm
trailing edge flap mounted in a wind tunnel of height 550 mm. All calculations be-

low were performed using second order extrapolation with NP=3,6 and 12. Based on

+
s

¢}
£

less than .1%.

Table 16 and Figure 8(a) show the CLG envelope vs. Mach number, along with the
exact free air solution. The Mach numbers listed correspond to the Multhopp angles,
M=sin 0, e=00, 180,..., 720. Figure 8(b) shows the interference ratio for CLG vs. M
using the same data. In all cases the effect of wall interference is to increase
the 1lift for a closed wall and to decrease it for an open jet. At very low speeds,

these effects are roughly +3% and -36% respectively, increasing in magnitude as the

Mach number increases. The increase is less and is more delayed with the closed wall

and it is greater and more gradual with the open jet. At high subsonic speeds, es-

pecially those above the critical Mach number, transonic nonlinearities will increas-

ingly alter the interference effects from those predicted by the present linear theory.
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Table 16. Steady lift interference vs. M for a flap at the three quarter chord

n=3.05556 BCLL % = /3 + 2T (exact)
closed wall open jet
free free
-C c; -C
Ls Lg Ls "L
M CL5 free ch free
CL5 CLG
. 000000 3.93081 +.027274 2.45693 -.357908
.309016 4.14457 +.030125 2.53450 -.370054
.587785 4,92542 +.014371 2.78953 -.410216
.809017 7.00387 +.075873 3.30696 -.492014
. 951057 15.26128 +.232474 4,.35129 -.648597

The phenomenon of acoustic resonance was orgininally discovered theoretical-
ly by Runyan and Watkins [67] in 1953 and subsequently verfied experimentally by
Runyan, Woolston and Rainey [36]. Later, Bland [8], [9] showed that for ideal
slotted wall tunnels described by the boundary condition (2.9), acoustic reso-
nance will occur at reduced frequencies given by

MAn
kn = W’ n=l,2,... (14-1)

where A, is the nth positive eigenvalue of (3.11y). Theoretical calculations
showing the effect of acoustic resonance on airloads over the full range of
ventilation coefficients were recently given by Fromme and Golberg [5].

Table 17 and Figure 9 present values of CL6 vs. Mach number for open and
closed tunnel walls at four values of reduced frequency, k=0,.1,.2 and .3. The
calculations utilize Bland's kernel (3.10) for an ideal slotted wall based on the
mass effect boundary condition (2.9). A condition of acoustic resonance between
the airfoil and the wind tunnel walls is displayed at k=.249 for M=.9. A pre-
cursor of acoustic resonance may be detected at M=.8 in that the magnitude of the
1ift coefficient for the closed wall condition has dropped below the value for
the open jet condition. This is because the fundamental resonant frequency for
an open jet is twice as high as the fundamental frequency for a closed wall. The
onset of resonance may also be detected by the dramatic shift in phase angle be-

ginning around M=.6 to M=.8.
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It should be emphasized that the effect of frequency on wind tunnel interference
is-a continuous one except of course at the actual resonant frequencies. For this
reason, unsteady wind tunnel tests should carefully take into consideration such un-
steady interference effects even though the reduced frequencies to be tested may lie
below their resonance values.

Table 17. C vs. M,k and p for an oscillating flap in a wind tunnel

L§ S e
75% hinge n=3.05556
CLa(u=w-closed wall) CLG(u=O—open jet)
M k real imag magn phase real imag magn phase

.0 .0 3.93081 0.00000 3.93081 0.00 2.45693 0.00000 2.45693 0.00
.0 .1 3.63755 -0.52198 3.67481 -8.17 2.43951 0.03078 2.43970 0.72
.0 .2 3.15090 ~-0.60877 3.20917 -10.94 2.39288 0.07723 2.39413 1.85
.0 .3 2.80157 -0.45100 2.83764 -9.15 2.32977 0.14703 2.33441 3.61

.2 .0 4.01623  0.00C00C 4.01622 0.0C 2.48840  0.0000C 2.48840  0.00
.2 .1 3.70295 -0.56739 3.74617 -8.71 2.47107 0.02451 2.47119 0.57
.2 .2 3.19239 -0.66681 3.26128 -11.80 2.42506 0.06541 2.42594 1.55
.2 .3 2.83538 -0.51065 2.88100 -10.21 2.36358 0.13075 2.36720 3.17
.4 .0 4.31034 0.00000 4.31034 0.00 2.59221 0.00000 2.59221 0.00

.4 .1 3.91916 -0.73544 3.98757 -10.63 2.57547 0.00202 2.57547 0.05
.4 .2 3.31937 -0.87977 3.43398 -14.84 2.53205 0.02405 2.53216 0.54
.4 .3 2.93429 -0.73451 3.02483 ~-14.05 2.47706 0.07086 2.47808 1.64

.6 .0 4.98528 0.00000 4.98528 0.00 2.80743 0.00000 2.80743 0.00
.6 .1 4.35658 -1.18762 4.51556 -15.25 2.79291 -0.05360 2.79343 -1.10
.6 .2 3.50453 ~1.44000 3.78884 -22.34 2.75829 -0.08640 2.75965 -1.79
.6 .3 3.02163 -1.36395 3.31521 -24.30 2.72364 -0.08998 2.72512 -1.89

-8 .0 6.84313 0.00000 6.84313 0.00 3.27336 0.00000 3.27336 0.00
.8 .1 5.00685 =-2.81467 5.74377 -29.34 3.27198 -0.22175 3.27949 -3.88
.8 .2 2.88884 -3.24022 4.34102 -48.28 3.28232 -0.45312 3.31345 -7.86
.8 .3 0.65287 -2.84171 2.91574 -77.06 3.33763 -0.74720 3.42024 -12.62

.9 .0 9.92111 0.00000 9.92111 0.00 3.79549 0.00000 3.79549 0.00
.9 .1 3.69704 -5.68263 6.77941 -56.95 3.83945 -0.51021 3.87320 -7.57
-9 .2 -0.75925 -1.22187 1.43855-121.86 3.99142 -1.33569 4.20898 ~18.50
.9 .3 1.80588 -0.32653 1.83517 -10.25 3.28022 -4.17219 5.30726 -51.83

el
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Figure 8. A§Eg§§yzliﬁ}_interferegggiy§:wmgEgr a flap at the three guarter chord




N N [N III-I-I 1 I EENE I s L] " 0 rmEIID nEE W oE TR ||-|n-:?
i
i
|
‘i%
-118-
0O #=*® - closed wall O H=0 - open jet n=3.05556 75% hinge
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CL6 vs. M,k and u for an oscillating flap in a wind tunnel
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§15. Conclusions

The numerical calculation of unsfeady airloads in ventilated wind tunnels
has been extended from our previous work [5] to include airfoils with multiple
leading and trailing edge flaps. This has been accomplished with further
developments both in the mathematical theory and in the computer program TWODI.

The computational foundation has been strengthened by establishing a more
powerful existence and convergence theory for arbitrary downwashes having finite
norm. This has led to improved error estimates and to a better understanding of
the behavior of collocation for solving integral equations with a leading Cauchy
singularity. Using the method of collocation for discontinuous downwash, our
theoretical estimates predict errors no better than 0(1/N) where N is the number
of basis functions. In practice this works out to 1-2% error using collocation
alone with the maximum number of basis functions (presently twenty-four). We
have shown in this work that such errors can be reduced by several orders of
magnitude using Richardson extrapolation; for essentially the same amount of
arithmetic, error reduction by factors of 500 have been achieved. Furthermore,
the method of extrapolation appears to work equally well for steady and unsteady
flow. To demonstrate this technique, we have presented accurate numerical re-
sults for an airfoil in a ventilated tunnel with a three quarter chord flap
oscillating at high frequencies up to and beyond resonance.

We have also shown that Bland's collocation method can be made much more effi-
cient by identifying the singularities in the kernel and integrating them separate-
ly with suitable quadrature rules. In the case of incompressible flow in free air,
we have demonstrated with TWODI using five basis functions for continuous down-
washes, that six decimal accuracy can be obtained uniformly for steady and unsteady
flow with little increase in computer time.

The applicability of TWODI has been extended by incorporating the kernel (4.13)
for steady flow in porous wall tunnels. The complete computational solution to this
problem is presented for unit downwash, and solutions for other downwashes can be
obtained at will.

The practical utility of TWODI has been improved by the incorporation of a
completely new input module. The entire program has been coded in ANSI FORTRAN
and is available for general use. Complete user instructions and a set of sample

problems are provided in this report.
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Several areas of future research appear to be particularly promising at

the present time. From a practical standpoint, the method of extrapolation

should be incorporated into the solution process for airfoils with flaps and
preliminary steps should be undertaken toward automatic accuracy control in
the future. Additional progress remains to be made through more efficient
integration of singularities in the kermel, and in the actual computation of
the kernel as well. The entire problem of boundary conditions at ventilated
wind tunnel walls remains open to research, and the possibility of using
nonlinear integral equation methods for transonic flow is an intriguing one.
Also, the study of solution methods other than collocation, both theoretically
and computationally, can be expected to be useful in the future.

While a general and fully satisfactory theory of unsteady wind tunnel
interference effects does not yet exist, the present work should increase
our practical computational capability and we hope it will add to the re-

liability and precision of aerodynamic testing.

Addendum Added in Proof

Since the writing of this report, the TWODI program has been extended to
provide automatic extrapolation and to utilize the improvements arising from
the reformulation of the Possio kernel described in section 12. These changes
are reflected only in the user instructions and sample input/output found in

section 9 and the Appendix.
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APPENDIX

This appendix provides example TIMESHARE input and output for three problems.
Responses by the user are underlined for ease of identification.

The first problem is entirely defaulted and produces results which agree to
6 decimals with the exact Sahngen and Kussner-Schwarz solutions [5] (Problem one
is listed to display the initial default values.) The second problem is chosen to
verify Bland's results [ 81 for an airfoil oscillating about the 42.5% chord in a
closed wall tunnel at M=.85. The second problem is not listed and another problém
is not immediately entered. Computer execution then occurs and the printed output
follows.

To demonstrate the modification of old problems into new ones, a new problem
one is next defined as the old problem two and then edited. The new problem one uti-
lizes five methods of solution. The first method merely demonstrates checking the
airfoil polynomials. Methods 2-4, if extrapolated with (11.51), will show that CLS
of a thin symmetrical airfoil for a flap hinged at the 75% chord in a ventilated
wind tunnel with n=550/180, u=2.0137, and M=.5 is given by

Crg = 3.204, (a-1)

which matches experimental results [68, Table 4], and is predicted by method 5

using automatic extrapolation.
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THIS I8 TWODI-IITY

FOR DEFAULT TQ INITIAL OR MOST RECENTLY DEFINED VALUES
TYFE D FOLLOWED RBY CARRIAGE RETURN IF IN TIMESHARE AND ENTER
AN OTHERWISE BLANK CARD WITH A D IN COLUMN 1 IF IN RATCH.
IF IN TIMESHARE TYFE HALT TO STOF.

ARE YOU IN TIMESHARE OR BATCH
T

ENTER NUMEBER OF LINES FER FAGE
]

ENTER TI1TLE
»n

ENTER QUTFUT COMEBINATION OF FOURLERs SECTION AND WORK
P I

ENTER LIST OF FRESSURE FOINTS
o

ENTER LIST OF MACH NUMRERS
L

ENTER LLIST OF FREQUENCIES
L

ENTER LIST OF HEIGHT TO LHORD RATIOS
P

ENTER LIST OF MASS EFFECT VENTILATION COEFFICIENTS
-

ENTER LIST OF VISCOUS EFFECT VENTILATION COEFFICIENTS
_—

ENTER LIST OF NOUES
-

ENTER NUMEER OF #0DE SHARES

T

ENTER MOUE SHaFE 1
_

ENTER MODE SHAFE 2
P o

ENTER MODE SHAFE X
v o

ENTER LSBT OF NOOE NUMEERS OF HINGES

-

ENTER NUMEER OF METHODS GF 99l.UTTOMN

PN

ENTER SOLUTTION FARAMETERS FOR METHUO 1

"

00 YOU WaNT THE INFUT DATA LISTED

T oYFS
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SAMFLE FRORLEM

N
0 YOU WANT TO ENTER ANOTHER FRORBLEM
YES

TIMESHARE = T
LINES FER FAGE = 66
FOURIER = T
SECTION = T
WORK = F
10 FRESSURE FOINTS
-, 800000 -+ 600000 ~+ 400000 ~,200000 0
+200000 + 400000 + 600000 +800000 1.,000000
1 MACH NUMRERS
0
2 REDUCED FREQUENCIES
0
1.000000
1 HEIGHT TO CHORD' RATIOS
INFINITY
1 WIND TUNNEL MASS EFFECT VENTILATION COEFFICIENTS
INFINITY
1 WIND TUNNEL VISCOUS EFFECT VENTILATION COEFFICIENTS
0
3 CHORDWISE NODES
=1, 000000 0 1.000000
3 MODE SHAFES
MODE 1
V564190 L 564190 V564190
MODE 2
-, 564190 V564190 1.692569
MODE 3
564190 -\ 564190 2,820948
0 HINGE LOCATIONS
1 METHODS OF SOLUTION
SOLUTION FARAMETERS FOR METHOD 1
11 = 3 I2= 5 I3= 0 Rl = 0 R2 0
10 YOU WANT TO MAKE CHANGES
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TO MODIFY OR RETAIN AN OLD FROBLEMs ENTER ITS NUMEER
OTHERWISE TYFE I FOLLOWED RY CARRIAGE RETURN

? 0

ENTER TITLE
7 VERIFICATION OF RESULTS IN BLAND SIAM J AFFL MATH 18(4) 830-848 1970
ENTER OUTFUT COMRINATION OF FOURIERs SECTION AND WORK
7 SECTION

ENTER LIST OF FRESSURE FOINTS

?Q

ENTER LIST OF MACH NUMERERS

? 1 .85

ENTER LIST OF FREQUENCIES

P3O0 W1 L2

ENTER LIST OF HEIGHT TO CHORD RATIOS

1l 7.5

ENTER LIST OF MASS EFFECT VENTILATION COEFFICIENTS
o

ENTER LIST OF VISCOUS EFFECT VENTILATION COEFFICIENTS
? 0

ENTER LIST OF NOIES

? 2 -1 1

ENTER NUMBRER OF MODE SHAFES

7?1

ENTER MODE SHAFE 1

T -85 1,15

ENTER LLIST OF NOIE NUMRERS OF HINGES

7o

ENTER NUMBER OF METHODS OF SOLUTION

? N

ENTER SOLUTION FARAMETERS FOR METHOD 1

? I

00 YOU WANT THE INFUT DATA LISTED

? NO

00 YOU WANT TO MAKE CHANGES

T NO

D0 YOU WANT TO ENTER ANOTHER FROBLEM

7 NO
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SAMFLE FRORI.EM

MACH = 0 REDUCED FREQUENCY = 0 FREE aAIR
SOLUTION RY COLLOCATION. NUMBER OF RASIS FUNCTIONS = &
FOURIER COEFFICIENTS OF FRESSURE DUE TO DISPFLACEMENT MODE 1

0 v
0 0
0 0
0 0
0 0
AEROOYNAMIC MORM OF FRESSURE FUNCTION = 0
FOURTER COEFFICIENTS OF PRESSURE DUE TO OISPLACEMENT MODE 2
2.00000000 0
0 0
0 0
o o]
0 o

AEROOYNAMIC NORM OF FRESSURE FUNCTION = 2,00000000

FOURIER COEFFICIENTS OF PRESSURE DIUE TO OQISPLACEMENT MODE 3
600000000
4.00000000
+«00000000
00000000
~.00000000
AERODYNAMIC NORM OF FRESSURE FUNCTION =

NO S OO0

21110255

SECTION AIRLOADR COEFFICIENTS

MODE COEFF REAL IMAGINARY MAGNITUNE FHAGSE ANGLE
1 LIFT 0 QO 0 0
1 FITCH 0 0 0 0
i X CF + 25000000 0 + 25000000 0
2 LIFT 7.08981540 0 7.08981540 0
2 FITCH 0 0 o ]
2 X CF + 23000000 ~0 + 23000000 0
3 LIFT 21.26944621 O 21.269444621 0
3 FITCH ~3.544%90770 0 3.54490770 -180.00
3 X CF + 38333333 -0 + 08333333 0



_r‘

MODE

GO T O DO G IR PI R PIPI PRI PRI RS PO R) B R e b bl bt e b b

X
-.80000
~+ 60000
~+40000
= «20000

0

+ 20000
+40000
+ 60000
+80000
1.00000
-+80000
-.60000
-+40000
=+ 20000
¢

+ 20000
+40000
+ 50000
+80000
1.00000
=.80000
= +60000
~+40000
~+20000

0

+20000
+40000
+ 60000
+B0OCGOG
160000

X/C
+10000
«+ 20000
+ 30000
+40000
+I0000
+60000
+ 70000
+80000
+ 20000

1.,00000
«10000
+ 20000
+ 30000
+40000
+ 50000
«&0000
+ 70000
+80000
+ 20000
+00000
+10000
+ 20000
« 30000
«400090
+ 30000
+ 50000
+ 70000
«80000
«F0000
1.00000

[y
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REAL

jeReRoRoReRoNoNoRoRo)

13.54035
?.02703
6.894351
5.52791
4,51332
3.68527
2.93479
2.25676
1.50451

0

24,37299

23.47029

23.44134

23.21721

22.56758

21.37457

19.50162

16.70001

12.33695

0

FRESSURES

IMAGINARY

SO OV CCLCOOUCOUOTCCOCOOC OO OO0

MAGNITUDE

COVOCOOOCOCTO

13.54055
?.02703
6.89451
S9.32791
4.51332
3.68527
2.95479
2:253676
1.50451

0

24,37299

23.47029

23.44134

23.21721

22.546758

21.37457

19.50162

16.70001

12,.336925

0

FHASE ANGLE

OCOCQCOOCUCUCVOORVOLCO OOV OCOCOOOOOOOSO




MACH = @

FOURIER COEFFICIEMTS OF FPRESSURE DUE

) RETUCED
SOLUTION RY COLLOCATION.
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NUMERER

e 3PPTRLZT77
=« BICO0ET L
LOQDDOET7
= 00000316
Q00001 L2

AROOGYNAMIC NORM OF

FINIRTER COEFFICIENTS OF

FRESHURE

FRESSURE FUNCTION =

77942828

FREQUENCY =
OF BASIS FUNCTIONS = %

SAMFLE FPROERLEM

1.00000 FREE AIR

TO DISFLACEMENT MODE 1
 BRPATBIG
~ Q0000177
+00000160
-, 00000114
«Q00000%6
+B3712758

NUE TO DISFLACEMENT MODNE 2

1.87833520

200001662
-.000014614
+D0000834

= 73001865
- 24998218
-.000010%0

+00000407

AERODYNAMIT

FOURIER COIFFIDIENTS OF

3450

MORM OF FPRESSURE

FRIESSURE
20243

F.723000126
e 316646717
- 165666885

L000001 78

AERGDYNAMIC NORM

OF

FRESSURE

FUNCTION =

nUE

FUNCTION =

~. 00000262
2.95985423

TO DISFLACEMENT MODE 3
147722619
4,00006962
1.99993X338

+D0003832
= 00001229
6. P44HPPG5T9

SECTION AIRLOAD COEFFICIENTS

REAL

=1 41699805
44311870
471689922
2.756300130
cBEAGBET2
B3
12,18454
"'3 + 3:’3\

+R2154

MOLE CORFF

1 LIFT
1 F1TCH
1 X CF
2 LIFT
2 FLITOH
2 X CF
3 LIFT
3 FITOH
3 X CF

087

(MAGINARY
1.212261 32
+Q00001.57
f2PRL7627

& . 65852491
-1 772446858
L 35878%41
5.23663048
~3.544946940
L 293246671

FHASE ANGLE
=-126.54

-+ 00

-32.39

69 .44
-29.33
~-23.26
133.15
“17065

MAGNITUDE
238004745
+44311870
BEBS567ET
7:20903115
1.89300114
72805424
13.248219%937
4,859146424
+PEFOT7PNQ



MOLE

A A N I T aye

Gd L0 d BN 03 G DT L

X
~.80000
_060000
~ 40000
~ s 20000

0

+20000
+A40000
+ 60000
+80000
1.00000
=+ B80000
=+ 60000
~+40000
~ e 20000
0

« 20000
+40000
+&0000
+80000
1.00000
=+ 80000
~+&0000
=.+40000
- 20000
0

» 20000
+40000
+ 60000
80000
1.00000

X/C

+ 10000
+ 20000
« 30000
+40000
+ 30000
+ 650000
+ 70000
+ 80000
+ 70000
1.00000
« 10000
«20000
« 30000
+40000
« 350000
+60000
+ 70000
+B0000O
« 200090
1.000900
+«10000
« 20000
+30000
+40000
30000
+ 60000
+ 70000
«80000
+ 20000
1.00000
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REAL
~.&7318
-1.35286
~1.72272
-1.93404
”L003048
-2.02641
-1.92022
~1.69227
~1.27863
0
8.39124
5.05245
3.16%940
1.76728
+ 63055
-« 29591
~1.00535
-1.44499
"1047486
0
7+40125
12.72149
15.68226
17.19512
17.53623
16.82917
15.13622
12.46017
8.62172
0

FRESSURES

IMAGINARY
3.65213
2.43476
1.85957
1.49098
1.21738

99399
79696

+ 60849
+40579

0
4,.59251
b6.67258
7.8540%
8.50845
8.75251
8.62050
8.09369%
7.08436
5.32471
Q0
~6.78%06
~-3.80348
-+14707
3.846216
7.84745
11.41934
14,11989
1529776
13.4688%6
0

MAGNITUDE
3.71404
2.78537
2.534%91
2.44203
2.36746
2.25706
2.07904
1.79841
1.34148

0
?.956580
8.3569862
8.446947
8.46%005
8.77320
8.62558
8.155%21
723022
5.52519

Q

10.04340
13,27791
15.,68B295
17.62352
19.21203
20.33772
20.69967
12.73011

16.17781
N

FHASE ANGLE
-100.47
-112.06
~-132,81
~142,37
~14%9,06
-153,87
~157 .44
~-160,22
~162.39

0
~28.69
_52087
-68,02
~78.27
-85.88
~21.97
~-97.08

-101.33
~105,48

0

42,53
16,65
+ 54
~12.66
—24011
‘34016
-43,01
-50.84
~-57.80

N
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VERIFICATION OF RESULTS IN ERLAND SIAM J AFFL MATH 18(4) 830-848 1970

MACH = + 85000 REQUCED FREQUENCY = 0 ETA = 7.5000
CLOSELD TUNNEL WALL
SOLUTION BY COLLOCATION. NUMEER OF BASIS FUMNCTIONS = 3
SECTION AIRLOAD COEFFICIENTS -
MODE COEFF REAL IMAGINARY MAGNITUDE FHASE ANGLE
1 LIFT 12.23511824 0 12.23511824 0
1 FITCH -, 03818645 0 +03818645 ~180.00
1 X CF $ 25624211 ~Q + 23624211 0

VERIFICATION OF RESULTS IN ELAND SIAM J AFFL MATH 18(4) 830-848 1970
MACH = +85000 REDUCED FREQUENCY = +10000 ETA = 7.+.3000
CLOSEL TUNNEL WaLlL
SOLUTION RY COLLOCATION. NUMRER OF BRASIS FUNCTIONS = O
SECTION AIRLOAD COEFFICIENTS
MODE COEFF REAL IMAGINARY MAGNITUDE FHASE ANGLE
1 LIFT 5.89895953 ~5,39528821 7.992417653 42,45
1 FITCH -+ 39062630 -.352684346 + 32628430 137.92
1 X CF + 26256375 «13106613 + 29345878 —26.53

VERIFICATION OF RESULTS IN RLAND

MACH =

MOLE

+835000

SOLUTION RY

COEFF
LIFT
FITCH
X CP

SIAM J AFFL MATH 18(4) 830-848 1970
REDUCED FREQUENCY = 20000 ETA = 73000
CLOSED TUNNEL WALL
COLLOCATION. NUMRER OF RASIS FUNCTIONS = 5
SECTION AIRLOADL COEFFICIENTS
REAL IMAGINARY MAGNITUDRE FHASE ANGLE
5,43100764 -.22007538 5.43546476 2,32
~-.01944215 ~.78007066 « 78031290 ?1.43
+ 24552645 + 28708426 37775734 ~49 .44
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DO YOU WANT TO ENTER ANOTHER PROELEM

? YES

YOU MAY MODIFY OR RETAIN OLIN FPROBLEM N AS NEW PRORBLEM M
FROVINED N IS GREATER THAN OR EQUAL TO M

TO MODIFY OR RETAIN AN OLD FROBLEMs ENTER ITS NUMBER

OTHERWISE TYFE I' FOLLOWED RY CARRIAGE RETURN
? 2

00 YOU WANT THE INFUT DATA LISTED

? NO

U0 YOU WANT TO MAKE CHANGES

T YES

10 YOU WANT TO LINE EDIT

* YES

NOW OFEN FOR LINE EDITING. WHEN DONE TYFE END

? TITLE

ENTER TITLE

7 COMFARISON WITH TIJDEMAN & SCHIFFERS NLR TR 73018L 1974
? MACH

ENTER LIST OF MACH NUMEERS
? 1.5
? FREQUENCY

JENTER LIST OF FREQUENCIES

P10

? HEIGHT

ENTER LIST OF HEIGHT TO CHORD RATIOS

? 1 _3.0555556

? MASS

ENTER LIST OF MASS EFFECT VENTILATION COEFFICIENTS

? 1 2.0137

¢ NODES

ENTER LIST OF NODES

? 3 -1 .51

? MODE

ENTER NUMBER OF MODE SHAFES

? 1

ENTER MODE SHAFE 1
? 00 .5
?_—

ENTER LIST OF NODE NUMBERS OF HINGES
? 12
? METHOD

ENTER NUMBER OF METHODS OF SOLUTION
?5

ENTER SOLUTION FARAMETERS FOR METHOD 1

19000

ENTER SOLUTION PARAMETERS FOR METHOD
? 33000

ENTER SOLUTION FARAMETERS FOR METHOD 3
? 36000

ENTER SOLUTION FARAMETERS FOR METHOD 4
? 212 000

ENTER SOLUTION FARAMETERS FOR METHOD
? 33200
7 END

DO YOU WANT THE INFUT DATA LISTED

7 YES

3

4]
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COMFARISON WITH TIJDEMAN & SCHIPFERS NLR TR 73018L 1974

TIMESHARE
LINES FER FAGE
FOURIER
SECTION

WORK

T
66
F
T
F

O FRESSURE FOINTS

1 MACH NUMRERS
« 500000

1 REDUCED FREQUENCIES
0O

1 HEIGHT TO CHORDI RATIOS
3.055556

1 WIND TUNNEL MASS EFFECT VENTILATION COEFFICIENTS
2.,013700

1 WIND TUNNEL VISCOUS EFFECT VENTILATION COEFFICIENTS
0

3 CHORDWISE NODES

~1,000000 + 300000 1.000000
1 MODE SHAFES
MODneE 1

o 0 +500000

1 HINGE LOCATIONS
3

e

S METHODG OF SOLUTION
SOLUTION FARAMETERS FOR METHOD 1

Il = 1 I2 = 9 3 = 0 R1 = 0 R2 = 0
SOLUTION FARAMETERS FOR METHODR 2
It = 3 I2 = 3 I3 = 0 Ri = 0 o 0
SOILUTION FARAMETERS FOR METHOD 3
I1 = 3 I2 = & I3 = 0O R1 = 0 R2 = 0
SOLUTION FARAMETERS FOR METHOD 4
I1 = 3 I2 = 12 I3 = 0 R1 = 0 R2 = 0
SOLUTTON FARAMETERS FOR METHOD 5
1= 3 I2 = 3 I3 = 2 R1 = i R2 = O
D0 YOU WANT TO MAKE CHANGES

T NO
00 YOU WANT TO ENTER ANOTHER PRORUL &
? NO
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*kXkKCOMFUTATIONAL CHECK OF MAJOR SUBRDUTINESkXXX

2.1 CHECKING AFF. CORRECT VALUES,» THEN CURRENTLY COMFUTEID VALUES.
+ 2482434168 + 5941373295 -, 6544599169 + 5508566527
+ 2482434168 + 5941373295 —+ 6544599169 + 3508566527

COMPARISON WITH TIJDEMAN & SCHIFFERS NLR TR 73018L 1974
MACH =

+30000 REDUCED FREQUENCY = 0 ETA = 3.0856
MASS EFFECT (SLOTTED WALL) VENTILATION COEFFICIENT = 2.0137
VISCOUS EFFECT (FOROUS WALL) VENTILATION COEFFICIENT = 0
SOLUTION EBY COLLOCATION. NUMBRER OF RASIS FUNCTIONS = 3

SECTION AIRLOAD COEFFICIENTS

MODE COEFF REAL IMAGINARY MAGNITUDE FHASE ANGLE

1 LIFT 2.86621003 0 2.86621003 0

1 FITCH =« 77670622 v 77670622 ~180,00

1 X CP + 79197439 -0 79197439 0

COMFARISON WITH TIJDEMAN & SCHIFFERS NLR TR 73018L 1974

MACH = + 30000 REDUCED FREQUENCY = 0 ETA = 3.0556
MASS EFFECT (SLOTTED WALL) VENTILATION COEFFICIENT = 2.,0137
VISCOUS EFFECT (FOROUS WALL) VENTILATION COEFFICIENT = Q

SOLUTION EBY COLLOCATION. NUMBER OF BASIS FUNCTIONS = &

SECTION AIRLOADN COEFFICIENTS
MODE COEFF REAL

IMAGINARY MAGNITULE FHASE ANGLE
1 LIFT 3.01589975 0 3.01589973 0
1 FITCH ~+74651846 0 + 74651846 ~180.00
1 X CF + 743505522 -0 + 74505522 0

COMPARISON WITH TIJDEMAN & SCHIFFERS NLR TR 73018L 1974

MACH = « 30000 REDUCED FREQUENCY = 0 ETA = 3.,0556
MASS EFFECT (SLOTTED WALL) VENTILATION COEFFICIENT = 2.0137
VISCOUS EFFECT (FOROUS WALL) VENTILATION COEFFICIENT = 0

SOLUTION BY COLLOCATION. NUMRBRER OF BRASIS FUNCTIONS = 12

SECTION AIRLOAD COEFFICIENTS
MODE COEFF REAL

IMAGINARY MAGNITULE FHASE ANGLE
1 LIFT 3.10514470 0 3.10514470 )
1 FITCH ~, 73830865 0 + 73830865 ~180.00
1 X CF + 72353897 -0 « 72353897 0
COMFARISON WITH TIJDEMAN & SCHIFFERS NLR TR 73018L 1974
MACH = +350000 REDUCED FREQUENCY = 0 ETA = 3.0556
MASE EFFECT (SLOTTELD WALL) VENTILATION COEFFICIENT = 2.0137
VISCOUS EFFECT (FOROUS WALL) VENTILATION COEFFICIENT = 0
SOLUTION BY EXTRAFOLATION. ORDER = 2 PERIOD = 3

MODE COEFF
1 LIFT
1 FITCH
1 X CF

SECTION AIRLOAD

REAL IMAGINARY

3.,20398%970
~.73468821
+ 70860835

0 YOU WANT TO ENTER ANOTHER FRORLEM

* NO

COEFFICIENTS
MAGNITUDE
0 3.20398970
0 + 73468821

-0 + 708460835

FHASE ANGLE
0

-180.00

0

B N

e
T A
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